
Solutions in motion

Intelligence Production Movement

IEC programming for
nodes

Ed. 13 - English

IEC programming for nodes
Doc. MS270928

Ed. 13 - English - 28 Oct 2020

IEC programming for nodes www.cmz.it

IMPORTANT
CMZ SISTEMI ELETTRONICI S.r.l. reserves the right to make changes to the products de-
scribed in this document at any time without notice.
This document has been prepared by CMZ SISTEMI ELETTRONICI S.r.l. sole-
ly for use by its customers, guaranteeing that at the date of issue it is the most up-to-date doc-
umentation on the products.
Users use the document under their own responsibility and certain functions de-
scribed in this document should be used with due caution to avoid danger for person-
nel and damage to the machines.
No other guarantee is therefore provided by CMZ SISTEMI ELETTRONICI S.r.l., in par-
ticular for any imperfections, incompleteness or operating difficulties.
This document contains confidential information that is propri-
etary to CMZ SISTEMI ELETTRONICI S.r.l.. Neither the document nor the informa-
tion contained therein should be disclosed or reproduced in whole or in part, without ex-
press written consent of CMZ SISTEMI ELETTRONICI S.r.l..

Table of Contents

1. Purpose of the user guide ... 1

2. What's new .. 3

3. User Guide ... 5
3.1. Main characteristics .. 5

3.1.1. BD series: Program safety condition procedure 11
3.1.2. BD series: Request to go in the Stopped state 12
3.1.3. Running Stopped state notes ... 12

3.2. Declaration of the variables ... 12
3.2.1. How the variables are stored into the memory 12
3.2.2. Memory resources of the drive ... 15
3.2.3. GLOBAL variables .. 16
3.2.4. RETAIN variables ... 19
3.2.5. CONSTANT objects .. 20
3.2.6. LOCAL variables ... 21

3.3. Instructions ... 21
3.4. What is a function block? ... 23

4. IEC reference guide ... 27
4.1. System functions and function block(SYS_) .. 27
4.2. Axes management (MC_) ... 42

4.2.1. Axis status ... 42
4.2.2. Drive status .. 44
4.2.3. Axis functionalities .. 46
4.2.4. Data Type : AXIS_REF .. 47
4.2.5. Function blocks list ... 48

4.3. Peripherals management (IO_) ... 83
4.3.1. Encoder management .. 83
4.3.2. Digital inputs management ... 104
4.3.3. Digital outputs management ... 117
4.3.4. Analog input management ... 126

Doc. MS270928 - Ed. 13 - 28 Oct 2020 v

IEC programming for nodes www.cmz.it

4.4. Utility library (Ut_) .. 135
4.4.1. Functions and function blocks list ... 135

4.5. Examples ... 145
4.5.1. Axis management .. 145
4.5.2. Capture example .. 149
4.5.3. Example of the management of a program safety condition
request ... 151

A. Error codes list .. 155

B. Parameters table ... 157

C. How can I assess the memory usage? 159

D. Objects of the programming .. 161

vi Doc. MS270928 - Ed. 13 - 28 Oct 2020

Chapter 1

Purpose of the user guide

The purpose of this document is to describe how to use the provided functions and function
blocks in an IEC application program which runs into a drive.

Important
This manual does not teach how to write an IEC program, the standards and the syntax, there-
fore, rst of all, it is important to study an IEC programmer guide.

Important
This manual refers to the programs that can be written in the drives:

• ISD ;

• SVM ;

• IBD (Hw >= 15) ;

Doc. MS270928 - Ed. 13 - 28 Oct 2020 1

IEC programming for nodes

2 Doc. MS270928 - Ed. 13 - 28 Oct 2020

Chapter 2

What's new

Ed 5

• Description of all the Io_ function blocks (see Section 4.3, “Peripherals management
(IO_)”).

• Example for the capture function management (see Section 4.5.2, “Capture example”).

Ed 6

• New IBD system.

Ed 7,8

• Description of safety conditions of the program for IBD. There is also a little example.

Ed 9

• some corrections have been made in the MC_Home.

Ed 10

• New modes of homing inserted in the MC_Home.
• Informations about the resources of the drive updated (differences between ISD, SVM

rmware less or greater 38).

Ed 11

• Contents related to the BD drives added.
• Table A.3 added in the Appendix A, Error codes list (Appendix A).
• CMP_REF reference added for the Io_EncComparator position comparator.
• References used in the Section 4.3, “Peripherals management (IO_)” function blocks up-

dated.

Ed 12

• MC_Gear function block contents updated.
• Io_EncEventCaptureValue two new capture source added.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 3

IEC programming for nodes www.cmz.it

• Table A.3 wrong error codes deleted in the IO's function blocks error codes table.
• Various minor corrections.

Ed 13

• Appendix D, Objects of the programming: contents updated with the PROFINET ad-
dresses and with a note to introduce the "n" variable in the addressing.

• Various minor corrections.

4 Doc. MS270928 - Ed. 13 - 28 Oct 2020

Chapter 3

User Guide

The programming of the drives follows the IEC 61131-3 language standards and in the same
way the functions and function blocks dedicated to the motion control respect the PLCopen
standards.

Important
In the Program page of the SDSetup PC program is possible to write a program, build it, de-
bug it, and download it into the drive.

3.1. Main characteristics
The main characteristics of the programming are:

• IEC language Structural Text (ST);

• type of variables: BOOL, SINT, USINT, INT, UINT, DINT, UDINT, BYTE, WORD,
DWORD;

• the STRING variable type is not managed;

• array and struct objects are available;

• some function and function block are provided;

• the application code runs into an unique task and it can be divided into some different
programs:

Doc. MS270928 - Ed. 13 - 28 Oct 2020 5

IEC programming for nodes www.cmz.it

Figure 3.1. Application code structure

• main

this is the main program and it must always be present. At the beginning of each exe-
cution of the program the %I (input status) are updated with the value of the digital
inputs, and at the end of the program the %Q (output status) are copied to the digital
outputs;

Important
The measure of the "PROGRAM main" time execution can be read in the plc peri-
od variable (CAN index 0x4616.00, MODBUS 8773). The read value is the actu-
al measure, not the maximum. The "PROGRAM main" is continuously executed.

• exception

when a fatal error happens during the execution of an instruction, the application
code cannot run, therefore the main program execution is stopped. If the exception
program is present in the application code, it is called before the stop of the program
execution; in this way the programmer can insert in this program all the instructions,
functions and functions blocks that are necessary to guarantee a safe stop of the ap-
plication code execution. The exception program is usually executed only once. The
function SYS_Continue permits to continue the calling of the program. At the end of
the execution of this program the application is stopped. The function SYS_Restart
permits to restart the application with a partial or total reset, or with a rmware restart.
An example of fatal error is a division for zero. The object 8709 shows the reason of

6 Doc. MS270928 - Ed. 13 - 28 Oct 2020

User Guide

the alarm (see Appendix A, Error codes list). It is possible to read it with the function
SYS_ReadObject.

Figure 3.2. exception

• resett

if the resett program is present in the application code, then it is called when a total
reset startup is executed. It runs before the resetp program. The total reset is usually
executed only at the rst startup of the application code, then the application has a
normal startup. In a normal startup the application skips the resett program and starts
from the resetp program and then calls the main program.

Figure 3.3. Startup

Doc. MS270928 - Ed. 13 - 28 Oct 2020 7

IEC programming for nodes www.cmz.it

Warning
If the Section 3.2.4, “RETAIN variables” management is not ac-
tive, then at every switch off/switch on of the drive a total reset startup is execut-
ed, therefore the resett program is always executed.

Note
While commissioning the application program, the code is usually modi-
fied and then built and downloaded into the drive. At the end of the down-
load procedure the application program is launched. If the declaration of the Sec-
tion 3.2.4, “RETAIN variables” is changed compared to the previous down-
loaded application, then it is executed a total reset startup, else it is executed a nor-
mal startup.

• resetp

if the resetp program is present in the application code, then it is executed at every
startup.

• Intn

with (the second) n = 0 to 8, these are a group of programs which are launched when
a particular event happens. An event is joined to a program Intn by the function
SYS_EnEventInt.

Figure 3.4. Intn program management

8 Doc. MS270928 - Ed. 13 - 28 Oct 2020

User Guide

Important
When the Intn program is running, the drive executes it as fast as possible. The ex-
ecution of the Intn program reduces the free resources of the system, there-
fore it is important to insert into these programs only the very essential instruc-
tions, functions and functions blocks.

The main characteristics of an Intn program are:

• an Intn program is more important than the other programs, therefore when it is
launched it stops the execution of the programs that are running. The only excep-
tion is that an Intn program cannot break the execution of another Intn program.

• when the event happens there is a delay before the called Intn program is launched.

Note
When only one event happens, then the delay before the start of the execu-
tion of the called Intn program can be 400µs.

Note
The delay can increase when more events happen very close, be-
cause more Intn programs have to be executed at the same time. The rst char-
acteristic of the programming with SDSetup is that it has only one task, there-
fore it can execute only one program. It means that, while an Intn program is ex-
ecuting, the others stand waiting until it is finished.

• When more events happen very close, then more Intn programs have to be executed
at the same time. The priority of execution is defined by the number n of the Intn
program. The Intn program with the lowest n will be the rst one launched.

While an Intn program is running, the other events may anyway happen. The Intn
programs that is called by these events waits until the running program is executed.
When the execution of the Intn program finishes, the next launched Intn program
will be the Intn program which n value is the lowest. It is important to observe that
the priority is not the time of the rst happened event, but only the number n of
the Intn program.

• when an Intn program ends, the program can wait before restart the execution of
the application code.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 9

IEC programming for nodes www.cmz.it

Note
In the worst case the delay is 400µs.

• when an Intn program ends, and there is not any Intn program still on hold, then the
application code execution returns to the program which was stopped, restarting
from the instruction where it was been blocked;

• run

if the run program is present in the application code, then it is executed when the
application execution switches from "Stopped" to "Running" status. The execution is
started at the beginning of the main program. The status of the execution ("Stopped/
Running") is commanded from a button in the SDSetup, in the Program management
page.

Figure 3.5. When the application returns running

• stop

if the stop program is present in the application code, then it is executed when the
application execution switches from "Running" to "Stopped" status.

The execution is stopped at the end of the main program. The status of the execution
("Stopped/Running") is commanded from a button in the SDSetup, in the Program
management page.

10 Doc. MS270928 - Ed. 13 - 28 Oct 2020

User Guide

Figure 3.6. When the application is stopped

Warning
If the "PROGRAM main" is executing a loop that can-
not be solved, then it will be impossible to stop the program because the pro-
gram is always stopped at the end of the task.

3.1.1. BD series: Program safety condition procedure
In the BD series there is an internal management of the actions that are requested to the drive:
the System Manager (see the product manual). It allows the drive to perform some actions only
if all the safety conditions are respected. One of this safety condition is managed from the IEC
program: in some application, before to stop the execution of the program, it is necessary to set
the application in a well defined situation. This is the safety condition of the application.

The sequence to set the program execution in a safe condition has two steps:

1. the program has to manage the IECSafeCondition internal semaphore (see
SYS_WrIECSafeCondition), which status has to be switched to "green" ;

2. after that, the program execution switches to "Stop". The main program arrives at the
end of its execution and then the program stop is called, if present.

IECSafeCondition
IECSafeCondition is an internal variable. It is a "semaphore" that can block the execution of the
action that has been requested by the System Manager.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 11

IEC programming for nodes www.cmz.it

For example: if an update of the IEC is requested through the SDSetup (download IEC), then
System Manager requests to the program to go in its safety condition. Now, if the semaphore is
yellow the action is blocked until it is set to "green".
The default value of IECSafeCondition is "green". In the program it is possible to change the value
of this variable through the SYS_WrIECSafeCondition function. See Section 4.5.3, “Example of
the management of a program safety condition request”.

3.1.2. BD series: Request to go in the Stopped state
The request to switch to the "Stopped" state is an action controlled by the System Manager, so
it needs that the IEC safety condition is respected.

3.1.3. Running Stopped state notes
For SD series the Running/Stopped state management is very simple:

• at the start-up the program is always in "Running" state;

• when the drive is in "Stopped" state and the program is downloaded, then the state re-
turns to "Running". At the end of the download, the IEC program is in Running state.

For BD series the management is quite different:

• at the start-up the program is always in "Running" state;

• When the drive executes an action that needs to put the program in the safety condition,
then at the end of this action the IEC state will return to the same status it was before
the action.

3.2. Declaration of the variables
This paragraph describes the declaration of the GLOBAL, RETAIN and LOCAL variables. The
rst sections are important because they explain how the variables are stored in the memory and
define the memory limits of the drives.

3.2.1. How the variables are stored into the memory
The memory used by the application program depends on the declaration order of the variables.
The declaration order, which guarantees to minimize the usage of memory, is:

12 Doc. MS270928 - Ed. 13 - 28 Oct 2020

User Guide

1. STRUCT and instances of FUNCTION BLOCK;

2. DINT, UDINT, DWORD;

3. INT, UINT, WORD,

4. SINT, USINT, BYTE,

5. BOOL

Here follow the reasons of the sequence.

Important
The CPU of the drives does not manage data type small-
er than a WORD (2 bytes). Bit and byte data type are not managed.

The internal management of the CPU, used in the drive, causes a different storing of the variables
in the memory:

• DINT, UDINT and DWORD : these variables always need 4 bytes (2 WORDS) and are
memorized at addresses that are multiple of 4 bytes;

• INT, UINT and WORD : these variables always need 2 bytes (1 WORD) and are mem-
orized at even addresses (multiple of 2 bytes);

• SINT, USINT and BYTE : these variables need 1 byte;

• BOOL : these variables need only 1 bit. It is impossible to use only a bit of the memory,
the minimum size of usable memory is 1 byte. Therefore 1 BOOL needs 1 byte, but if
in the declaration of the variables the BOOL are near than they are packed into the same
byte at different bits.

a : BOOL ;
b : BYTE ;
c : BOOL ;

this situation requires : a(1 byte) + b (1 byte) + c(1 byte) = 3 bytes.

Instead

a : BOOL ;

Doc. MS270928 - Ed. 13 - 28 Oct 2020 13

IEC programming for nodes www.cmz.it

c : BOOL ;
b : BYTE ;

"a" and "c" are packed into the same BYTE at bit 0 and 1, therefore the used memory is:
a,c(1 byte) + b(1 byte) = 2 bytes.

• the STRUCT and the instance of FUNCTION BLOCK respect the previous rules for
their internal variables, but they are always memorized at multiple of 4 bytes addresses.

Now it is simple to understand the next example:

a : INT ;
b : DINT ;
c : BYTE ;
d : UDINT ;

the total needed memory is 16 bytes:

BYTE DESCRIPTION
0,1 variable "a"

2,3 no variables, they are lost because "b" is a DINT, therefore it is memorized in a multiple of 4
bytes address

4-7 variable "b"

8 variable "c"

9-11 no variables, they are lost because "d" is a UDINT, therefore it is memorized in a multiple of
4 bytes address

12-15 variable "d"

If the same variables are declared in the next order the memory used is 11 bytes:

b : DINT ;
d : UDINT ;
a : INT ;
c : BYTE ;

BYTE DESCRIPTION
0-3 variable "b"

4-7 variable "d"

8,9 variable "a"

10 variable "c"

14 Doc. MS270928 - Ed. 13 - 28 Oct 2020

User Guide

3.2.2. Memory resources of the drive
The memory resources of the drive are:

• Return stack: it is used for variables that are declared in the "VAR, END_VAR" section
into a PROGRAM or FUNCTION. It is also used by the rmware of the drive for the
execution of the program;

• Stack: It is used by the rmware of the drive for the execution of the program;

• VAR GLOBAL: it is used for the variables that are declared in the "VAR_GLOBAL"
section;

• VAR GLOBAL RETAIN: it is used for all the variables declared in the "VAR_GLOBAL
RETAIN" section;

• %M, %I, %Q: it is used for the "VAR_GLOBAL" declared as %M, %I, %Q.

Note
The size of the memory resources depends on the product.

3.2.2.1. ISD, SVM with firmware lower than 38
Memory ISD (byte) SVM (byte)

Return stack (VAL LOCAL and internal usage) 1364 1364

Stack 256 256

VAR GLOBAL 768 768

VAR GLOBAL RETAIN 46 46

%M 256 256

%I 8 (6 bit used) 8 (9 bit used)

%Q 4 (4 bit used) 4 (5 bit used)

When the program is built the drive also executes an internal test of the memory usage. See also
Appendix C, How can I assess the memory usage?.

3.2.2.2. ISD, SVM with firmware greater or equal to 38
Memory ISD (byte) SVM (byte)

Return stack (VAL LOCAL and internal usage) 1364 1364

Doc. MS270928 - Ed. 13 - 28 Oct 2020 15

IEC programming for nodes www.cmz.it

Memory ISD (byte) SVM (byte)
Stack 256 256

VAR GLOBAL 1024 1024

VAR GLOBAL RETAIN 46 46

%M 512 512

%I 8 (6 bit used) 8 (9 bit used)

%Q 4 (4 bit used) 4 (5 bit used)

When the program is built the drive also executes an internal test of the memory usage. See also
Appendix C, How can I assess the memory usage?.

3.2.2.3. IBD
Memory IBD (byte)

Return stack (VAL LOCAL and internal usage) 1868

Stack 384

VAR GLOBAL 1076

VAR GLOBAL RETAIN 46

%M 512

%I 128(10 bit used)

%Q 128(7 bit used)

When the program is built the drive also executes an internal test of the memory usage. See also
Appendix C, How can I assess the memory usage?.

3.2.3. GLOBAL variables
The GLOBAL variables can be used by all programs of the application, their target is all the
application code (that means they can be used in all programs, function blocks, and functions in
the application code). They are declared at the top of the le and they are inserted into the section:

VAR_GLOBAL
 a : INT ;
 b AT %MW10 : INT ;
END_VAR

These variables can be monitored in the watch dialog (Program page) of the SDSetup.

A GLOBAL variable can be simple or can be memorized into the %M memory area.

16 Doc. MS270928 - Ed. 13 - 28 Oct 2020

User Guide

3.2.3.1. Exchange area: %M, %I, %Q variables
The %M variables are named "exchange area" because they represent a memory area used to ex-
change data between the program into the drive and the Modbus, EtherCAT communication
protocols. %I and %Q variables are respectively the images of the status of the digital inputs and
digital outputs. The digital inputs image (%I) is updated at the beginning of the MAIN program.
The digital output image (%Q) is applied to physical outputs at the end of the MAIN program.
The %M, %I, %Q variables are declared in the VAR_GLOBAL section. An example:

VAR_GLOBAL(* PLC Input Memory (0 - 127) *)
 Status0 AT %MW0 : WORD ; (* WORD0 = BYTE 0-1 *)
 Drive_Torque AT %MX1.0 : BOOL ; (* BYTE=1, BIT=0 *)
 Drive_Busy AT %MX1.7 : BOOL ; (* BYTE=1, BIT=7 *)
 Drive_Alarm AT %MX0.0 : BOOL ; (* BYTE=0, BIT=0 *)
 Position AT %MW2 : WORD ; (* WORD1 = BYTE 2-3 *)
 (* PLC Output Memory (128 - 255) *)
 Command0 AT %MW128 : WORD ; (* WORD128 = BYTE 128-129
 *)
 Enable_Drive AT %MX129.0 : BOOL ; (* BYTE=129, BIT=0 *)
 (* Digital Input *)
 Start AT %IX0.2 : BOOL ; (* BYTE=0, BIT=2 *)
 Stop AT %IX0.3 : BOOL ; (* BYTE=0, BIT=3 *)
 Disable AT %IX0.2 : BOOL ; (* BYTE=0, BIT=2 *)
 (* Digital Output *)
 Drive_Ok AT %QX0.0 : BOOL ; (* BYTE=0, BIT=0 *)
END_VAR

These variables allow the programmer to x where to allocate them in the memory. In other
words the programmer defines how to distribute the variables into the memory. The memory
allocation of the other (GLOBAL and LOCAL) variables is automatically done by the compiler.
In particular the variables are:

• %M : exchange data with Modbus, PROFIBUS, CANopen, EtherCAT;

• %I: image of digital inputs;

• %Q: image of digital outputs;

The declaration of the size of the variable is made by adding one of the following letter after %M,
%I, %Q:

• X : bit;

• B : BYTE;

• W : WORD;

Doc. MS270928 - Ed. 13 - 28 Oct 2020 17

IEC programming for nodes www.cmz.it

• D : DWORD

The exactly distribution of the memory is shown in the following tables:

%MD0

%MW2 %MW0

%MB3 %MB2 %MB1 %MB0

%MX3.7 ... %MX3.0 %MX2.7 ... %MX2.0 %MX1.7 ... %MX1.0 %MX0.7 ... %MX0.0

Table 3.1. Memory struct

16#12345678

16#1234 16#5678

16#12 16#34 16#56 16#78

2#00010010 2#00110100 2#01010110 2#01111000

Table 3.2. Data in the memory

Note
The memory allocation of %M, %I, %Q variables has to respect the Section 3.2.1, “How the vari-
ables are stored into the memory” rules.

Note
A variable can not be both mapped in the exchange memory and defined as RE-
TAIN. If the %M, %I, %Q variables are defined as RETAIN, they cannot be saved into EEP-
ROM memory.

Here follows the description of how the data are exchanged between the drive and a PLC or a PC.

DRIVEPLC - CANopen

Master
user

program
R/W Driver

0x4700.01
...
...
...
...

0x4700.40

%MD0
...
...
...
...

%MD252

R/W
Drive
user

program
CAN

Figure 3.7. Exchange data with CANopen communication

The size of the variables, exchanged through CANopen protocol, must be DWORD.
The %M exchange memory can be read or written by the CANopen protocol in this way:

• MD0 corresponds to 0x4700.01,

• ...,

18 Doc. MS270928 - Ed. 13 - 28 Oct 2020

User Guide

• MD252 corresponds to 0x4700.40.

DRIVEPLC MODBUS or PC

Master
user

program
R/W Driver

DW8800
...
...
...
...

DW8927

%MW0
...
...
...
...

%MW254

R/W
Drive
user

program
MODBUS

Figure 3.8. Exchange data with MODBUS communication

The size of the variables, exchanged through MODBUS protocol, can be WORD and DWORD.
The %M exchange memory can be read or written by the MODBUS protocol in this way:

• MW0 corresponds to DW8800,

•

• MW254 corresponds to DW8927.

3.2.4. RETAIN variables
The RETAIN variables are GLOBAL variables with the important characteristic of to hold the
values between a switch o and switch on of the drive. They are declared in a dedicated section,
outside of every program:

VAR_GLOBAL RETAIN
 r : INT ;
END_VAR

The variables are distributed in the memory according with the rules written in Section 3.2.1,
“How the variables are stored into the memory”.

Important
In the SD series and IBD the available memory for the RETAIN variables is limited to 46 byte.

When the management of the RETAIN variables is active, then their values are reset only when
the start-up of the drive needs the execution of a total reset (see Section 3.1, “Main characteristics”
- program resett).
In the SD series the management of the RETAIN variables has to be enabled. It is enabled when
the MODBUS parameter 588 (CANopen 5FF0.9) value is 1 or 3. The default value of this pa-
rameter is 0, therefore if there are RETAIN variables the program has to write the parameter in
the resett program.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 19

IEC programming for nodes www.cmz.it

Important
In the SD series, when the management of the RETAIN variables is activated, then the min-
imum value of Logic supply voltage, that is needed to keep alive the drive, is 40V in-
stead of 20V (that is the minimum needed Logic supply voltage when management of the RE-
TAIN variables is not active). When the Logic supply voltage falls under these thresh-
olds, then the application program is stopped, and the drive will shutdown.

In the IBD the management of RETAIN variables is always enabled.

VAR_GLOBAL
 hmi_var1 AT %MD0 : DINT ;
 err : BOOL ;
END_VAR

VAR_GLOBAL RETAIN
 var1 : DINT ;
END_VAR

PROGRAM main
 var1 := hmi_var1;
END_PROGRAM

PROGRAM resetp
 hmi_var1 := var1 ; (* at every startup load the RETAIN
 variable into hmi_var1 *)
END_PROGRAM

(* Executed only in a reset total startup *)
PROGRAM resett
 err := SYS_WriteObject(588,1); 1 (* it makes active the management of
 RETAIN variables *)
 var1 := 123 ; (* first initialization of var1 *)
END_PROGRAM

3.2.5. CONSTANT objects
A CONSTANT object is a GLOBAL variable with the characteristic to keep its value constant.
It is declared in a VAR_GLOBAL section with the information CONSTANT added.

VAR_GLOBAL CONSTANT

1This instruction line refers only to SD series products

20 Doc. MS270928 - Ed. 13 - 28 Oct 2020

User Guide

 r : INT := 1000 ;
END_VAR

3.2.6. LOCAL variables
The LOCAL variables are declared into a PROGRAM, FUNCTION or FUNCTION
BLOCK, in a "VAR - END_VAR" section.

VAR
 l : INT ;
END_VAR

Their characteristics are:

• their domain is only the PROGRAM, FUNCTION or FUNCTION BLOCK where
they are declared;

• in a FUNCTION they are initialized at each execution of the function. In a PRO-
GRAM or FUNCTION BLOCK they are initialized at the rst call of the PROGRAM
or FUNCTION BLOCK and then, since the second cycle, they keep the values of the
previous execution;

• they cannot be monitored with SDSetup watch variable tool.

3.3. Instructions
This paragraph describes the instructions that are available to the programmer.

Instruction Description
Arithmetical operations (ANY_INT)
+, -, *, / classical mathematic operations.

MULDIV(p1,p2,p3) it executes (p1*p2)/p3 and the intermediate product (p1*p2) is internally expressed with a size
bigger than the size of the data p1, p2, p3: for example if p1, p2, p3 are DINT, UDINT (32 bit),
then the product p1*p2 is on 64bit; if p1,p2,p3 are INT, UINT (16bit) the product is internally
stored on 32 bit; if p1, p2, p3 are SINT, USINT (8 bit) the product is internally stored stored
on 16 bit.

p1 MOD p2 it returns the remainder of p1/p2.

p1 ** p2 it returns the power of p1 high to p2. The exponent p2 must be INT.

SQRT(p1) it returns the square root of p1.

MAX(p1, p2) it returns the biggest value between p1 and p2.

MIN(p1, p2) it returns the smallest value between p1 and p2.

ABS(p1) it returns the absolute value of p1.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 21

IEC programming for nodes www.cmz.it

Instruction Description
Operations dedicated to the bit elaboration (BOOL, BYTE, WORD, DWORD)
p1 AND p2 [OR,
XOR]

logical operations AND, OR and XOR

SHL(p1, p2) it shifts the bits of p1 in the left direction, for as many "positions/bits" as declared in p2. When
it is executing the shift and the most significant bit "goes out" it is deleted.

SHR(p1, p2) it shifts the bits of p1 in the right direction, for as many "positions/bits" as declared in p2. When
it is executing the shift and the less significant bit "goes out" it is deleted.

ROL(p1, p2) it rotates the bit of p1 in the left direction for as many "positions/bits" as declared in p2. The
"rotate" operation is a special SHL(p1,p2) because when it is executing the shift and the most
significant bit "goes out" it is not deleted, as in the shift operation, and it is inserted in the less
significant position.

ROR(p1, p2) it rotates the bit of p1 in the right direction for as many "positions/bits" as declared in p2. The
"rotate" operation is a special SHR(p1,p2) because when it is executing the shift and the less
significant bit "goes out" it is not deleted, as in the shift operation, and it is inserted in the most
significant position.

Other instructions
RETURN it is used to jump at the end of the executing program.

EXIT it is used to finish (abort) the execution of the instructions written inside a ow control section.
For example, it is used to exit from the execution of an IF or a loop (WHILE...).

Flow control instructions
IF IF Expression THEN

 ThenInstructionsList;
ELSE
 ElseInstructionsList;
END_IF;

if Expression is TRUE, then it executes ThenInstructionsList, else the ElseInstructionsList.

CASE CASE Expression OF
 Element0: InstructionsList0;
 Element1: InstructionsList1;
ELSE
 ElseInstructionsList;
END_CASE;

If Expression is equal of one of ElementX, then it executes the correspondent InstructionsListX,
else it executes ElseInstructionsList. The ElementX can be a single number, or a group of num-
bers. For example:

CASE n OF
 1 : a:=a+1;
 2 : b:=b+1;
 11,12,13 : c:=c+1;
 16..25,14,15,88..89 : d:=d+1;
 29..32: e:=e+1;
ELSE
 f:=f+1;
END_CASE;

22 Doc. MS270928 - Ed. 13 - 28 Oct 2020

User Guide

Instruction Description
FOR FOR Variable := StartValue TO EndValue BY Increment DO

 InstructionsList;
END_FOR;

Variable starts from StartValue. It executes InstructionsList, then adds to Variable the Incre-
ment. If Variable is less or equal than EndValue it repeats InstructionsList, else it continues the
execution of the program with the instruction after END_FOR.

WHILE WHILE Condition DO
 InstructionsList;
END_WHILE;

While Condition is TRUE it repeats the execution of InstructionsList.

REPEAT REPEAT
 InstructionsList;
UNTIL Condition
END_REPEAT;

It executes InstructionsList cyclically until the Condition is FALSE, when Condition becomes
TRUE it continues the execution of the program from the instructions after END_REPEAT;

3.4. What is a function block?
A function block is an object written in IEC language. It is necessary in order to manage actions
which need a procedure to be executed. The function block permits to launch the procedure
and then, at each calling, to test if the procedure is active, executed (or Done), or if it has some
errors. A simple example is the function block MC_MoveAbsolute. It is used to manage the
movement of an axis to a target position. The function block starts the movement, and then,
when the motor arrives to the target position, it sets to TRUE the Done output. In this way, the
program is informed about the status of the movement.

In the following table the general rules of a function block management are explained:

output exclusivity the Done, Error, CommandAborted, Active outputs are mutually exclusive: only one at a
time can be TRUE on a FB. If Execute is TRUE, one of these outputs has to be TRUE. Only
one of the Done, Error, CommandAborted and Active outputs is set at the same time.

output status the Done, InVelocity, Error, ErrorID and CommandAborted outputs are reset with
the falling edge of Execute. However the falling edge of Execute does not stop or even influ-
ence the execution of the actual FB cycle. It must be guaranteed that the corresponding outputs
are set for at least one cycle if the situation (that makes them to be set) occurs, even if Execute
is reset before the FB execution has been completed. If an instance of a FB receives a new Exe-
cute before its cycle ends (as a series of commands on the same instance), the FB execution is
interrupted and restarts, so the FB will not return any feedback, like Done or CommandAborted,
of the previous action.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 23

IEC programming for nodes www.cmz.it

input parameters the parameters are used on the rising edge of the Execute input. To modify an input it is nec-
essary to change the input parameter(s) and to restart the FB.

sign rules the Velocity, Acceleration, Deceleration and Jerk are always positive values. Po-
sition can be both positive and negative.

error handling behav-
ior

all function blocks have two outputs, which deal with errors that can occur while executing that
function block. These outputs are defined as follows:
Error : the rising edge of Error informs that an error has occurred during the execution of the
function block;
ErrorID : Error number code.
Error types can be for example: parameters out of range, state machine violation attempted.
Done, InVelocity mean successful completion, so these signals are logically exclusive with
Error.

behavior of Done out-
put

The Done output is set when the commanded action has been successfully completed. When
multiple function blocks are working in sequence on the same axis, the following may apply:
if the movement on an axis is interrupted with another movement on the same axis without
having reached the final goal of the rst one, the Done of the rst FB will not be set.

behavior of Active
output

every FB can have an output Active, reflecting that the FB has not finished its cycle. Active
is SET at the rising edge of Execute and RESET when one of the outputs Done, Aborted,
or Error is set. It is recommended that this FB is kept in the active loop of the application
program for at least the Active TRUE status duration, because the outputs may still change.

behavior of Command-
Aborted output

CommandAborted is set, when a commanded motion is interrupted by another motion com-
mand. The reset-behavior of CommandAborted is like the one of Done. When CommandAbort-
ed occurs, the other output-signals such as InVelocity are reset.

input Enable the Enable is level sensitive. It means that the function block does not start only at the rising
edge detection of this input, but its cycle will be repeated as long as Enable is kept on high level.

Table 3.3. General rules

The behavior between the Execute and the outputs in a MC_MoveAbsolute function block
is as follows:

24 Doc. MS270928 - Ed. 13 - 28 Oct 2020

User Guide

Figure 3.9. Execute / outputs behavior

example 1 : the movement is aborted, therefore the output CommandAborted becomes TRUE;
example 2 : the function block has had an error;
example 3 : the movement has been completed successfully. The Done is TRUE only for one
time (cycle) because the input Execute is already FALSE;
example 4 : the movement has been completed successfully. The Done remains TRUE until the
input Execute is TRUE.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 25

IEC programming for nodes

26 Doc. MS270928 - Ed. 13 - 28 Oct 2020

Chapter 4

IEC reference guide

This chapter includes all the functions and function blocks that are necessary to write an IEC
program.

4.1. System functions and function block(SYS_)
This paragraph describes some functions and functions blocks called "system function".

Doc. MS270928 - Ed. 13 - 28 Oct 2020 27

IEC programming for nodes www.cmz.it

SYS_EnEventInt
It activates the management of an event in an INT PROGRAM.

Synopsis

FUNCTION SYS_EnEventInt : BOOL
 VAR_INPUT
 EventType : INT;
 IntNumber : INT;
 END_VAR

Return value
Value of type BOOL
If 0 then there are no errors.

Parameter

EventType

Value of type INT
Event type:

• SYS_EVENT_LOW_VOLTAGE (8) : it happens when the power supply passes un-
der the low voltage threshold;

• SYS_EVENT_TIMER (11) : int called every programmed time. This elapsing time
reference is written into 0x461A.02 (8722). This time is written into 461A.01
(8720)1.

• SYS_EVENT_GEAR_SYNC (4) : it happens when the change of ratio is done, while
the drive is executing an MC_Gear;

• SYS_EVENT_GEAR_RAMP (9) : it happens when the changing of ratio is started,
while the drive is executing an MC_Gear;

11 = 100µs. See "Description" below.

28 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

• SYS_EVENT_CAPTURE_A (6) : it happens when the capture peripheral A cap-
tures a new position;

• SYS_EVENT_CAPTURE_B (7) : it happens when the capture peripheral B cap-
tures a new position;

• SYS_EVENT_COMPARATOR_0 (10) : event of comparator 0 detected;

• SYS_EVENT_COMPARATOR_1 (0) : event of comparator 1 detected2.

Note
For a better programming it is suggested to use the CONSTANT names in-
stead of the related numbers.

IntNumber

Value of type INT
Number of the interrupt program INT, that is called if and when the EventType hap-
pens.

Description
it activates the management of a programmed event on an INT PROGRAM. When the event
happens, the INT PROGRAM is called.
The timer is set on 100 ms, but the drive approximates it to 500 ms. The result is that the INT
PROGRAM intervenes according to this rule:
0..400 ms = 0 ms
500..900 ms = 500 ms
...

2This event is valid only for BD drives.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 29

IEC programming for nodes www.cmz.it

SYS_DisEventInt
It deactivates the management of an event on an INT PROGRAM.

Synopsis

FUNCTION SYS_DisEventInt : BOOL
 VAR_INPUT
 EventType : INT;
 END_VAR

Return value
Value of type BOOL
If 0 then there are no errors.

Parameter

EventType

Value of type INT
Event type to be deactivated. See SYS_EnEventInt.

Description
it deactivates the management of a programmed event on an INT PROGRAM.

30 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

SYS_ReadTime
It returns the system time in milliseconds.

Synopsis

FUNCTION SYS_ReadTime : UDINT

Return value
Value of type UDINT
Actual time of the system.

Description
It returns the system time in milliseconds.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 31

IEC programming for nodes www.cmz.it

SYS_WriteObject
It writes a parameter of the drive.

Synopsis

FUNCTION SYS_WriteObject : BOOL
 VAR_INPUT
 ParameterNumber : UDINT ;
 Value : DINT ;
 END_VAR

Return value
Value of type BOOL
If 0 then there are no errors

Parameter

ParameterNumber

Value of type UDINT
It is the MODBUS address of the parameter (see Appendix B, Parameters table).

Value

Value of type DINT
Value to write in the selected parameter.

Description
It writes Value in the parameter with address ParameterNumber.

Important
Both SYS_ReadObject and SYS_WriteObject functions can access to the addresses that are re-
lated to the exchange area, but only by WORD and not by DWORD data type.

32 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

SYS_ReadObject
It reads a parameter of the drive.

Synopsis

FUNCTION SYS_ReadObject : DINT
 VAR_INPUT
 ParameterNumber : UDINT ;
 END_VAR

Return value
Value of type DINT
it reads the value of a specific parameter.

Parameter

ParameterNumber

Value of type UDINT
It is the MODBUS address of the parameter (see Appendix B, Parameters table).

Description
It reads the parameter which address is ParameterNumber.

Important
Both SYS_ReadObject and SYS_WriteObject functions can access to the addresses that are re-
lated to the exchange area, but only by WORD and not by DWORD data type.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 33

IEC programming for nodes www.cmz.it

SYS_Restart
It permits to restart the application.

Synopsis

FUNCTION SYS_Restart : BOOL
 VAR_INPUT
 Type : INT ;
 END_VAR

Return value
Value of type BOOL

If 0 then there are no errors

Parameter

Type

Value of type DINT

Type of restart:

• 0 : the program restarts with the execution of PROGRAM resetp;

• 1 : the program restarts with the execution of PROGRAM resett;

• 2 : it simulates a switch o-switch on of the drive. The restart will be applied 10 sec-
onds after the execution of the command. In these 10 seconds the PLC remains on
STOP state.

Note
With IBD, before to execute SYS_Restart(2) it is necessary to put the dri-
ve in the safety conditions. See the manual of the IBD for further details.

34 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Description
It permits to restart the application. It is usually used into PROGRAM EXCEPTION, to avoid
the machine blocking due to the program lock when an exception happens.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 35

IEC programming for nodes www.cmz.it

SYS_Continue
It requests to continue the execution of program EXCEPTION.

Synopsis

FUNCTION SYS_Continue : BOOL

Return value
Value of type BOOL
If 0 then there are no errors.

Description
The PROGRAM exception is usually executed only one time, but sometimes when an excep-
tion happens, it is necessary to run a safety procedure. For example, to move the axis in a safety
position and then switch o the digital outputs: in this case, the PROGRAM exception has to be
executed several times. If this function is called, then the PROGRAM exception does not stop
its execution but repeat it once again.

36 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

SYS_MemoryToEeprom
It manages the saving and restoring of some %M into the EEPROM.

Synopsis

FUNCTION_BLOCK SYS_MemoryToEeprom
 VAR_INPUT
 Execute : BOOL ;
 LoadStore : BOOL ;
 Index : UINT;
 Lenght : UINT;
 END_VAR
 VAR_OUTPUT
 Done : BOOL ;
 Active : BOOL ;
 Error : BOOL ;
 ErrorID : DINT ;
 END_VAR

Parameter

Execute

Value of type BOOL
At the rising edge it starts to copy the memory.

LoadStore

Value of type BOOL
Direction of the copy:

• 0 : load data from EEPROM to %M;

• 1 : store data from %M to EEPROM.

Index

Value of type UDINT
It is the starting address of the %M to manage.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 37

IEC programming for nodes www.cmz.it

Lenght

Value of type UINT
It is the length of the area to move.

Done

Value of type BOOL
Flag that is set to TRUE when the copy operation is finished.

Active

Value of type BOOL
Flag that is set to TRUE when the procedure is in progress.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred in the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Description
The RETAIN area of the drive has few bytes, but sometimes it is important to save into EEP-
ROM some variables. This function block permits to save a part of the %M memory area into the
EEPROM, and also to restore a part of the %M area with values saved into EEPROM. The part
of the managed %M memory area is declared with its start address (Index) and with its Lenght.

38 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

SYS_RdIECSafeCondition
It reads the value of the semaphore IECSafeCondition.

Synopsis

FUNCTION SYS_RdIECSafeCondition : INT
 VAR_INPUT
 Event : DWORD;
 END_VAR

Return value
Value of type INT
It is the state of the IECSafeCondition semaphore (0 = green, 1 = yellow, 2 = red).

Parameter

Event

Value of type DINT
It has to be 0. It means 'all events'.

Description
It reads the state of the semaphore IECSafeCondition. See the example Section 4.5.3, “Example
of the management of a program safety condition request”.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 39

IEC programming for nodes www.cmz.it

SYS_RqsIECSafeCondition
It returns TRUE when the event is requesting to the program to go in safe condition.

Synopsis

FUNCTION SYS_RqsIECSafeCondition : BOOL
 VAR_INPUT
 Event : DWORD;
 END_VAR

Return value
Value of type BOOL
TRUE means that the system manager is requesting to the program to go in its safety condition
before to continue the action referred to the event.

Parameter

Event

Value of type DINT
It is the reference number of the event that is making the request.

Description
It informs when the system manager is requesting to the program to go in its safety condition
before to continue the action referred to the event. It is useful when the IECSafeCondition is
"yellow" (see SYS_WrIECSafeCondition).
In this situation when the function SYS_RqsIECSafeCondition returns TRUE, the program
can execute all the operations to put the application in a well defined condition and then it
switches the semaphore to "green". After that, the safety condition for the IEC program is reached
and the system manager can continue the execution of the action referred to the event.
See the example Section 4.5.3, “Example of the management of a program safety condition request”

40 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

SYS_WrIECSafeCondition
It writes the internal semaphore IECSafeCondition.

Synopsis

FUNCTION SYS_WrIECSafeCondition : DINT
 VAR_INPUT
 Event : DWORD;
 State : INT;
 END_VAR

Return value
Value of type DINT
If 0 then there are no errors

Parameter

Event

Value of type DINT
It has to be 0. It means all events.

State

Value of type INT
It is the value to write in IECSafeCondition semaphore:

• [0] this value switches the semaphore to "green" state, therefore the execution of the
event is allowed;

• [1] this value switches the semaphore to "yellow" state. When the system manager re-
quests to put the program in safety condition, this condition suspends the execution
of the event until the program sets the semaphore to "green" (State = 0).

• [2] this value switches the semaphore to "red" state, therefore the execution of the
event is aborted.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 41

IEC programming for nodes www.cmz.it

Description
It writes the state of the internal semaphore IECSafeCondition. When the State is [1], the IEC
program wants to suspend the execution of the event that has requested the safety condition.

See the example Section 4.5.3, “Example of the management of a program safety condition request”

4.2. Axes management (MC_)
This paragraph includes all the informations that are necessary to manage an axis in an IEC pro-
gram.

4.2.1. Axis status
The axis can be in one of the following status:

• INITIALIZATION : when the axis is in this status, the program is initializing its vari-
ables;

• STANDSTILL : the axis keeps its command position;

• ERRORSTOP : the axis has had an error;

• STOPPING : the axis is executing a stop ramp (see MC_Stop);

• EMERGENCY STOPPING : the axis is executing an emergency stop ramp (see
MC_EmergencyStop);

• DISCRETE MOTION : the axis is executing a discrete movement. These movements
finish automatically and without the execution of others motion function blocks and
then the state automatically returns STANDSTILL.

• CONTINUOUS MOTION : the axis is executing a continuous movement. These
movements are "endless" (e.g. a velocity command) and are interrupted when another
motion function block is executed, or if there is an error. The axis state never passes di-
rectly from CONTINUOUS MOTION to STANDSTILL.

• HOMING : the axis is executing an homing procedure (see MC_Home).

The function block MC_ReadStatus returns the status of the axis.

The state diagram describes which motion function blocks or events may change the status of
the axis.

42 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Figure 4.1. Axis status diagram

When the axes program starts the axis is always in INITIALIZATION status.
When the drive is "ReadyToSwitchOn" (see Section 4.2.2.1, “How digital inputs and outputs
manage the drive”) the axis status automatically becomes STANDSTILL.
When the axis has an error, its status becomes ERRORSTOP and the behavior of the motor
depends on the drive management.

Note
• when the motor arrives to an hardware or software limit switch, the move-

ment is stopped;

• for all the other alarms, the drive switches o the torque of the motor.

When a motion function block is launched, then the axis changes its status according to the
following relations:

• with MC_Home the status becomes HOMING;

• with MC_MoveAbsolute the status becomes DISCRETE MOTION;

• with MC_MoveVelocity or MC_Gear the status becomes CONTINUOUS MOTION;

• with MC_Stop the status becomes STOPPING;

Doc. MS270928 - Ed. 13 - 28 Oct 2020 43

IEC programming for nodes www.cmz.it

• with MC_EmergencyStop the status becomes EMERGENCY STOPPING.

4.2.2. Drive status
The drive status is described by the ReadyToSwitchOn, Run, Fault digital outputs (see Sec-
tion 4.2.2.1, “How digital inputs and outputs manage the drive”). It can be read by MC_Read-
DriveStatus.

4.2.2.1. How digital inputs and outputs manage the drive

Figure 4.2. Interface between controller and drive

Digital Inputs:

• ReadyToSwitchOn : it is TRUE when the drive is ready to work.

• Run : it is TRUE when the drive is switched on (the power stage of the drive is switched
on).

• Fault : it is TRUE when the drive has an alarm. When it is TRUE the digital inputs
ReadyToSwitchOn and Run are FALSE.

Digital Outputs:

• SwitchOn : when it becomes TRUE, the controller commands the drive to switch on
the power stage;

• Reset : on the rising edge, the axes program tries to recover the drive from a Fault situa-
tion;

44 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

• Brake : when it is TRUE, the motor can freely run, when it is FALSE the brake is on,
therefore the motor is blocked. The brake control can be automatically managed from
the axes program or be driven in manual mode.

In the following diagram there is the description of the SwitchOn timing procedure with auto-
matic Brake control:

Figure 4.3. SwitchOn procedure timing

The next diagram describes the drive behavior when there is an alarm. The Fault signal becomes
TRUE and immediately the Brake, Run and ReadyToSwitchOn I/Os are set to FALSE.

Figure 4.4. Fault management

Doc. MS270928 - Ed. 13 - 28 Oct 2020 45

IEC programming for nodes www.cmz.it

Important
For SD series there is not the brake management.

4.2.3. Axis functionalities
This section describes some axis functionalities.

4.2.3.1. SW limits management
There are a positive and a negative SW limit:

• when the axis exceeds the positive limit with a positive velocity, then the axis switches to
the ERRORSTOP state with Axis is arrived at a SW limit switch error code;

• when the axis exceeds the negative limit with a negative velocity, then the axis switches
to ERRORSTOP state with Axis is arrived at a SW limit switch error code.

To use a SW limit it is necessary:

1. to configure the position limit (in the SYS_WriteObject the needed parameters num-
bers are: 4327, 4329);

2. to activate the position limit management (for the SYS_WriteObject the needed para-
meter number is 4326).

4.2.3.2. HW limits management
There are a positive and a negative HW limit:

• when the axis exceeds the positive limit with a positive velocity then the axis switches to
ERRORSTOP state with Axis is arrived at a limit switch error code;

• when the axis exceeds the negative limit with a negative velocity then the axis switches to
ERRORSTOP state with Axis is arrived at a limit switch error code.

To use a HW limit is necessary to configure which inputs are the positive and negative limits.

4.2.3.3. Emergency ramp
This ramp is executed when the motor arrives to an hardware or limit switch. It is configured
with the parameter number 4343.

46 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

4.2.4. Data Type : AXIS_REF
The data type AXIS_REF represents the axis in an IEC program.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 47

IEC programming for nodes www.cmz.it

AXIS_REF
It is the axis reference.

Synopsis

TYPE
 AXIS_REF : STRUCT
 num : <type>INT</type>;
 END_STRUCT;
END_TYPE

Elements

num

Value of type INT
It is an internal number. In a project each axis has an identification number, different
from the other axes.

Description
This Data Type is the axis reference. It is used to declare an axis in the project. It is important to
initialize the struct with Num = MC_REF_AXIS_MAIN.

4.2.5. Function blocks list
The function blocks can be divided in two groups: motion and administrative (not driving mo-
tion).

4.2.5.1. Motion funtion blocks
This paragraph describes the function blocks dedicated to movement actions.

48 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

MC_EmergencyStop

It commands an emergency ramp stop. It is a non-controlled stop.

Synopsis

FUNCTION_BLOCK MC_EmergencyStop

VAR_IN_OUT
 Axis : <type>AXIS_REF</type> ;
END_VAR
VAR_INPUT
 Execute : <type>BOOL</type> ;
 Deceleration : <type>DINT</type> ;
 Jerk : <type>DINT</type> ;
END_VAR
VAR_OUTPUT
 Done : <type>BOOL</type> ;
 CommandAborted : <type>BOOL</type> ;
 Error : <type>BOOL</type> ;
 ErrorID : <type>DINT</type> ;
END_VAR

Parameter

Axis

Value of type AXIS_REF

Axis reference

Execute

Value of type BOOL

At the rising edge the axis starts to move

Deceleration

Value of type DINT

Value of deceleration [axis unit per second]

Doc. MS270928 - Ed. 13 - 28 Oct 2020 49

IEC programming for nodes www.cmz.it

Jerk

Value of type DINT
It must be 100.

Done

Value of type BOOL
Zero velocity is reached.

CommandAborted

Value of type BOOL
Flag that is set to TRUE if the command is aborted by another motion command.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred in the function block

ErrorID

Value of type DINT
Error identification code (see Table A.1)

Description
This function block commands an uncontrolled motion stop and transfers the axis to the
EMERGENCYSTOPPING status. The program stops the axis in open loop mode. It aborts
any motion function block execution in progress. With the Done output set, the state is trans-
ferred to STANDSTILL. While the axis is in state EMERGENCYSTOPPING status, no other
FB can perform any motion on the same axis. If the MC_Stop is launched and the axis is already
in STANDSTILL, then the Done output is immediately set to TRUE.

50 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

MC_Gear

It manages a gear movement between an encoder and the axis.

Synopsis

 FUNCTION_BLOCK MC_Gear
 VAR_IN_OUT
 Master : Enc_Ref;
 Slave : AXIS_REF;
 END_VAR
 VAR_INPUT
 StartGear : BOOL ;
 Execute : BOOL ;
 Mode : WORD ;
 RatioInNumerator : DINT ;
 RatioInDenominator : DINT := 1000;
 RatioEndNumerator : DINT ;
 RatioEndDenominator : DINT := 1000;
 MasterSpace : DINT ;
 InpStart : BOOL ;
 MasterStart : DINT ;
 END_VAR
 VAR_OUTPUT
 InGear : BOOL ;
 Active : BOOL ;
 CommandAborted : BOOL ;
 Error : BOOL ;
 ErrorID : DINT ;
 State : INT ;
 SlaveStart : DINT ;
 END_VAR

Parameter

Master

Value of type Enc_Ref

Doc. MS270928 - Ed. 13 - 28 Oct 2020 51

IEC programming for nodes www.cmz.it

Encoder master reference of the gear movement. The Master has to be IO_RE-
F_ENC_AUXILIARY (see ENC_REF). In this way the Master is the auxiliary encoder.
In order to use the internal simulated master, the auxiliary master configuration must
be changed.

Slave

Value of type AXIS_REF
Axis slave reference of the gear movement.

StartGear

Value of type BOOL
At the rising edge it starts the gear movement between the encoder and the axis. When
it is TRUE the status of the outputs of the function block are managed. At the rising
edge it executes the action of the Execute input, too.

Execute

Value of type BOOL
When the StartGear input is TRUE, at the rising edge it makes active the change of
the ratio of the gear movement. The characteristics of the change are defined by the
other inputs.

Mode

Value of type WORD
It defines the mode of change of the ratio of the gear movement. One of the bits 1, 2,
3, 4 must be set.

• bit 0 : initial gear movement ratio :
0 = actual ratio;
1 = ratio declared with RatioInNumerator/RatioInDenominator;

• bit 1 : if it is 1 than the change of the ratio from initial to end ratio is started at the
rising edge of the Execute input;

• bit 2 : if it is 1 than the change of the ratio from initial to end ratio is started at the
rising edge of the InpStart input;

• bit 3 : if it is 1 than the change of the ratio from initial to end ratio is started when the
master position is greater than the MasterStart input. It is used when the master
has a positive velocity;

• bit 4 : if it is 1 than the change of the ratio from initial to end ratio is started when
the master position is less than the MasterStart input. It is used when the master
has a negative velocity.

52 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

RatioInNumerator

Value of type DINT
It is the numerator of the initial ratio. The range of the admitted values is 1 ÷ 32768.

RatioInDenominator

Value of type DINT
It is the denominator of the initial ratio. The range of the admitted values is 1 ÷ 32768.

RatioEndNumerator

Value of type DINT
It is the numerator of the gear movement ratio at the end of the change. The range of
the admitted values is 1 ÷ 32768.

RatioEndDenominator

Value of type DINT
It is the denominator of the gear movement ratio at the end of the change. The range
of the admitted values is 1 ÷ 32768.

MasterSpace

Value of type DINT
It is the master space within the change of the ratio will be done. The minimum value
is 1.

InpStart

Value of type BOOL
When Mode has bit 2 = 1 , then the change of the ratio starts at the rising edge of In-
pStart.

MasterStart

Value of type DINT
When Mode has bit 3 or 4 = 1 , this input defines the master position threshold for the
change of the ratio.

InGear

Value of type BOOL
This ag is set to TRUE when the axis is moving in gear movement with ratio equals to
RatioEndNumerator/RatioEndDenominator.

Active

Value of type BOOL

Doc. MS270928 - Ed. 13 - 28 Oct 2020 53

IEC programming for nodes www.cmz.it

The function block is active.

CommandAborted

Value of type BOOL
Flag that is set to TRUE if the command is aborted by another motion command.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred in the function block

ErrorID

Value of type DINT
Error identification code (see Table A.1)

State

Value of type INT
State of the procedure for the change of the ratio:

• 0 : not active;

• 1 : it is waiting for the event which triggers the start of the ratio change;

• 2 : the State passes to this number when Mode has bit 3 or 4 = TRUE. In this state
it is waiting that the master position becomes higher (or lower) than MasterStart;

• 3 : it is changing the ratio;

• 4 : the ratio has been changed.

SlaveStart

Value of type DINT
The slave position at the beginning of the changing of the gear movement ratio.

Description
This function block manages the gear movement between a master encoder and the axis. It has
two functions:

• it activates the gear movement;

• while the axis is moving in gear mode, with this function block it is possible to change
the gear ratio between the master and the slave movement. There are several modes to

54 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

manage the change. The changing can start from the actual ratio or from a defined ra-
tio, and can also start immediately at the rising edge of the Execute input or when a
particular condition happens. All these characteristics are defined by the Mode, InpS-
tart and MasterStart inputs. The initial ratio, when it is necessary, is declared with
RatioInNumerator/RatioInDenominator. The gear ratio at the end of the change is
RatioEndNumerator/RatioInDenominator. The change of the ratio, from the initial
to the end one, is always executed in MasterSpace master units.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 55

IEC programming for nodes www.cmz.it

MC_Home

It executes a selected homing procedure.

Synopsis

 FUNCTION_BLOCK MC_Home
VAR_IN_OUT
 Axis : AXIS_REF;
END_VAR
VAR_INPUT
 Execute : BOOL ;
 Position : DINT;
 HomingMode: INT;
 VelocitySearchSwitch : DINT;
 VelocitySearchZero : DINT;
END_VAR
VAR_OUTPUT
 Done : BOOL ;
 CommandAborted : BOOL ;
 Error : BOOL ;
 ErrorID : DINT ;
END_VAR

Parameter

Axis

Value of type AXIS_REF
Axis reference

Execute

Value of type BOOL
At the rising edge it starts the action.

Position

Value of type DINT
It is the absolute position when the reference signal is detected.

56 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

HomingMode

Value of type INT
It selects the homing type:

• 1: homing against the switch connected to home input (the limit switch detection
interrupts the procedure);

• 2: homing against the switch connected to home input and then searching of the
"zero mark" encoder reference pulse (the limit switch detection interrupts the proce-
dure); for the SD drives it is allowed only to the ones which feedback is an incremen-
tal encoder;

• 3: homing against the switch connected to home input, with the limit switch man-
agement;

• 4: homing against the switch connected to home input and then searching of the
"zero mark" encoder reference pulse, with the limit switch management; for the SD
drives it is allowed only for the ones which feedback is an incremental encoder;

• 5: set the position of the axis equals to the Input Position without any movement;

• 6: the axis searches the encoder reference pulse "zero mark" (the limit switch detec-
tion interrupts the procedure); for the SD drives it is allowed only for the ones which
feedback is an incremental encoder;

• 7: homing against the switch connected to the hw limit input without "zero mark"
reference pulse;

• 8: homing against the switch connected to hw limit input and then searching of
the "zero mark" encoder reference pulse; for the SD drives it is allowed only for the
ones which feedback is an incremental encoder;

• 101: it is equal to 1, but at the end of the procedure the offsets are saved in the
permanent memory so that the position will be correctly restored after a reboot of
the drive. It is allowed only for SD drives which feedback is an absolute encoder;

• 103: it is equal to 3, but at the end of the procedure the offsets are saved in the
permanent memory so that the position will be correctly restored after a reboot of
the drive. It is allowed only for SD drives which feedback is an absolute encoder;

• 105: it is equal to 5, but at the end of the procedure the offsets are saved in the
permanent memory so that the position will be correctly restored after a reboot of
the drive. It is allowed only for SD drives which feedback is an absolute encoder;

• 107: it is equal to 7, but at the end of the procedure the offsets are saved in the
permanent memory so that the position will be correctly restored after a reboot of
the drive. It is allowed only for SD drives which feedback is an absolute encoder;

Doc. MS270928 - Ed. 13 - 28 Oct 2020 57

IEC programming for nodes www.cmz.it

VelocitySearchSwitch

Value of type DINT
It is the velocity used to move the axis toward the limit switch. It has to be a value dif-
ferent from zero.

VelocitySearchZero

Value of type DINT
In the HomingType = (1),(3) it is the velocity used to move the axis out of the micro,
while in the modes (2),(4) it is the velocity used to move the axis toward the reference
pulse of the encoder. It has to be a value different from zero.

Done

Value of type BOOL
Flag that is set to TRUE when the homing procedure is correctly finished.

CommandAborted

Value of type BOOL
Flag that is set to TRUE if the command is aborted by another motion command.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Description
This function block starts an homing procedure. An homing procedure is used to get a reference
position in a defined real condition. The possible procedures are:

• 1, 3, 101, 103:

1. the axis moves toward the home switch with VelocitySearchSwitch velocity;

2. when the axis reaches the home switch, the axis starts to move with Veloci-
tySearchZero velocity;

3. when the axis leaves the home switch, the axis position is set to the Position value
and then the axis is stopped.

58 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

the difference between mode 1 and 3 is the axis behavior if the movement reaches a limit
(hw limit switch or software limit) while the homing procedure is in progress. Further-
more in modes 1 the axis goes in ERRORSTOP, instead in mode 3 the axis maintains
the HOMING state and it reverts the movement in the opposite direction until the axis
nds the home switch.

• 2, 4, 102, 104:

1. the axis moves toward home switch with VelocitySearchSwitch velocity;

2. when the axis reaches the home switch, the axis starts to move with Veloci-
tySearchZero velocity;

3. when the axis reaches the reference pulse of the encoder, the axis position is set to
the Position value and then it is stopped.

the difference between mode 2 and 4 is the axis behavior if the movement reaches a limit
(hw limit switch or software limit) while the homing procedure is in progress. Further-
more in modes 2 the axis goes in ERRORSTOP, instead in mode 4 the axis maintains
the HOMING state and it reverts the movement in the opposite direction until the axis
nds the home switch.

• 5:

the axis position is set to the Position input value without any movement.

• 6:

1. the axis moves with VelocitySearchZero velocity;

2. when the axis reaches the reference pulse of the encoder, the axis position is set to
the Position input value and then it is stopped.

• 7: The procedure is equal to the number 1, but at the beginning the axis moves toward
the hw limit;

• 8: The procedure is equal to the number 2, but at the beginning the axis moves toward
the hw limit.

When the homing procedure is in progress the axis state is HOMING. When the procedure ends,
the Done output is set to TRUE and the axis state becomes STANDSTILL.

Important
The homing procedure is allowed when the axis state is STANDSTILL.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 59

IEC programming for nodes www.cmz.it

MC_MoveAbsolute

It moves the axis to an absolute position.

Synopsis

FUNCTION_BLOCK MC_MoveAbsolute

VAR_IN_OUT
 Axis : <type>AXIS_REF </type>;
END_VAR
VAR_INPUT
 Execute : <type>BOOL</type> ;
 Position : <type>DINT</type> ;
 Velocity : <type>DINT</type> ;
 Acceleration : <type>DINT</type> ;
 Deceleration : <type>DINT</type> ;
 Jerk : <type>DINT</type> ;
 Direction : <type>INT</type> ;
END_VAR
VAR_OUTPUT
 Done : <type>BOOL</type> ;
 CommandAborted : <type>BOOL</type> ;
 Error : <type>BOOL</type> ;
 ErrorID : <type>DINT</type> ;
END_VAR

Parameter

Axis

Value of type AXIS_REF

Axis reference

Execute

Value of type BOOL

At the rising edge it starts to move the axis.

60 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Position

Value of type DINT
It is the target absolute position.

Velocity

Value of type DINT
It is the target velocity.

Acceleration

Value of type DINT
It is the acceleration which the drive uses to start the axis movement in order to reach
the target Velocity.

Deceleration

Value of type DINT
It is the deceleration which the drive uses to stop the axis.

Jerk

Value of type DINT
It must be 100.

Direction

Value of type DINT
It is not used.

Done

Value of type BOOL
Flag that is set to TRUE when the movement is finished.

CommandAborted

Value of type BOOL
Flag that is set to TRUE if the command is aborted by another motion command.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT

Doc. MS270928 - Ed. 13 - 28 Oct 2020 61

IEC programming for nodes www.cmz.it

Error identification code (see Table A.1).

Description
This function block moves the axis from the current position to the target Position.

When the movement is executing the axis state is DISCRETEMOTION. When the procedure
finishes the output Done is set to TRUE and the axis state becomes STANDSTILL. If the
MC_MoveAbsolute is launched and the axis is in STANDSTILL and it is already in the target
position then the output Done is set to TRUE immediately.

Figure 4.5. position movement

The position movement needs some parameters:

• end velocity: it is the velocity in the final part of the movement. It is useful when the
end of the movement has to be execute in a "softly mode", that means that the speed near
the target position is defined by the programmer and not automatically calculated by the
drive;

• anticipation of end position: it is the space within the movement has to run with end
velocity;

62 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Figure 4.6. position movement with end velocity

• when the axis has a velocity not equal to zero, and the target position is too close to the
actual position, the position movement is solved with a profile which guarantees the de-
celeration and describes an overshoot.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 63

IEC programming for nodes www.cmz.it

MC_MoveVelocity
It moves the axis with a target velocity.

Synopsis

 FUNCTION_BLOCK MC_MoveVelocity

VAR_IN_OUT
 Axis : <type>AXIS_REF</type> ;
END_VAR
VAR_INPUT
 Execute : <type>BOOL</type> ;
 Velocity : <type>DINT</type> ;
 Acceleration : <type>DINT</type> ;
 Deceleration : <type>DINT</type> ;
 Jerk : <type>DINT</type> ;
 Direction : <type>INT</type> ;
END_VAR
VAR_OUTPUT
 InVelocity : <type>BOOL</type> ;
 CommandAborted : <type>BOOL</type> ;
 Error : <type>BOOL</type> ;
 ErrorID : <type>DINT</type> ;
END_VAR

Parameter

Axis

Value of type AXIS_REF
Axis reference

Execute

Value of type BOOL
At the rising edge it starts to move the axis.

Velocity

Value of type DINT

64 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

It is the target velocity.

Acceleration

Value of type DINT
It is the acceleration which the drive uses to start the axis movement in order to reach
the target Velocity.

Deceleration

Value of type DINT
It is the deceleration which the drive uses to stop the axis

Jerk

Value of type DINT
It must be 100.

Direction

Value of type DINT
It is not used.

In Velocity

Value of type BOOL
Flag that is set to TRUE when the theoretical profile arrives to target Velocity.

CommandAborted

Value of type BOOL
Flag that is set to TRUE if the command is aborted by another motion command.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Description
This function block moves the axis to target Velocity.
When the movement is executing the axis state is CONTINUOUSMOTION. If the target veloc-
ity is set to 0, when the movement reaches the target velocity (in other words, it stops) the axis
changes its state in STANDSTILL.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 65

IEC programming for nodes www.cmz.it

MC_Stop

It commands a motion stop.

Synopsis

FUNCTION_BLOCK MC_Stop

VAR_IN_OUT
 Axis : <type>AXIS_REF</type> ;
END_VAR
VAR_INPUT
 Execute : <type>BOOL</type> ;
 Deceleration : <type>DINT</type> ;
 Jerk : <type>DINT</type> ;
END_VAR
VAR_OUTPUT
 Done : <type>BOOL</type> ;
 CommandAborted : <type>BOOL</type> ;
 Error : <type>BOOL</type> ;
 ErrorID : <type>DINT</type> ;
END_VAR

Parameter

Axis

Value of type AXIS_REF

Axis reference

Execute

Value of type BOOL

At the rising edge it starts to move the axis.

Deceleration

Value of type DINT

Value of deceleration [axis's unit per second]

66 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Jerk

Value of type DINT
It must be 100.

Done

Value of type BOOL
Flag that is set to TRUE when the Zero velocity is reached.

CommandAborted

Value of type BOOL
Flag that is set to TRUE if the command is aborted by another motion command.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1)

Description
This function block commands a motion stop and transfers the axis to the STOPPING state.
It aborts any ongoing motion function block execution. When the Done output is set, the state
is transferred to STANDSTILL. If the MC_Stop is launched and the axis is in STANDSTILL,
then the output Done is set to TRUE immediately.

4.2.5.2. Administrative funtion blocks

Doc. MS270928 - Ed. 13 - 28 Oct 2020 67

IEC programming for nodes www.cmz.it

MC_Power
It controls the power stage.

Synopsis

FUNCTION_BLOCK MC_Power

VAR_IN_OUT
 Axis : <type>AXIS_REF</type>;
END_VAR
VAR_INPUT
 Enable : <type>BOOL</type> ;
END_VAR
VAR_OUTPUT
 Status : <type>BOOL</type> ;
 Error : <type>BOOL</type> ;
 ErrorID : <type>DINT</type> ;
END_VAR

Parameter

Axis
Value of type AXIS_REF
Axis reference.

Enable
Value of type BOOL
At the rising edge it sets the power on. It does not work like an usual 'Enable' input:
• To enable the axis it is necessary to execute a rising edge of this input, from 0 to 1;
• To disable the axis it is necessary to execute a falling edge of this input, from 1 to 0;

Status
Value of type BOOL
Effective state of power stage. TRUE = axis torque active; FALSE = axis free;

Error
Value of type BOOL

68 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Description
This function block controls the power stage (ON or OFF). See an example in MC_ReadDriveS-
tatus.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 69

IEC programming for nodes www.cmz.it

MC_ReadActualPosition

It returns the actual position of the axis.

Synopsis

FUNCTION_BLOCK MC_ReadActualPosition

VAR_IN_OUT
 Axis : <type>AXIS_REF</type> ;
END_VAR
VAR_INPUT
 Enable : <type>BOOL</type> ;
END_VAR
VAR_OUTPUT
 Done : <type>BOOL</type> ;
 Error : <type>BOOL</type> ;
 ErrorID : <type>DINT</type> ;
 Position : <type>DINT</type> ;
 Velocity : <type>DINT</type> ;
 Acceleration : <type>DINT</type> ;
END_VAR

Parameter

Axis

Value of type AXIS_REF

Axis reference.

Enable

Value of type BOOL

As long as 'Enable' is true, it continuously gets the value of the parameter.

Done

Value of type BOOL

Flag that is set to TRUE when the read actual position value is available.

70 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Position

Value of type DINT
Absolute actual position in axis's unit.

Velocity

Value of type DINT
Actual velocity in axis's unit per second.

Acceleration

Value of type DINT
Actual acceleration in axis's unit per second2.

Description
This function block, while enabled, continuously returns the value of the parameters. The para-
meters are the actual position, velocity and acceleration of the axis.

Note
Axis's unit is step.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 71

IEC programming for nodes www.cmz.it

MC_ReadCommandPosition

It returns the commanded position of the axis.

Synopsis

FUNCTION_BLOCK MC_ReadCommandPosition

VAR_IN_OUT
 Axis : <type>AXIS_REF</type> ;
END_VAR
VAR_INPUT
 Enable : <type>BOOL</type> ;
END_VAR
VAR_OUTPUT
 Done : <type>BOOL</type> ;
 Error : <type>BOOL</type> ;
 ErrorID : <type>DINT</type> ;
 Position : <type>DINT</type> ;
 Velocity : <type>DINT</type> ;
 Acceleration : <type>DINT</type> ;
END_VAR

Parameter

Axis

Value of type AXIS_REF

Axis reference.

Enable

Value of type BOOL

As long as 'Enable' is true, it continuously gets the value of the parameter.

Done

Value of type BOOL

Flag that is set to TRUE when the read commanded position value is available.

72 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1)

Position

Value of type DINT
Absolute commanded position in axis's unit.

Velocity

Value of type DINT
Commanded velocity in axis's unit per second.

Acceleration

Value of type DINT
Commanded acceleration in axis's unit per second2.

Description
This function block, while enabled, continuously returns the value of the parameters. The para-
meters are the commanded position, velocity and acceleration of the axis.

Note
Axis's unit is step.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 73

IEC programming for nodes www.cmz.it

MC_ReadDriveStatus

It returns drive status.

Synopsis

FUNCTION_BLOCK MC_ReadDriveStatus

VAR_IN_OUT
 Axis : <type>AXIS_REF</type> ;
END_VAR
VAR_INPUT
 Enable : <type>BOOL</type> ;
END_VAR
VAR_OUTPUT
 Done : <type>BOOL</type> ;
 Error : <type>BOOL</type> ;
 ErrorID : <type>DINT</type> ;
 ReadyToSwitchOn : <type>BOOL</type> ;
 SwitchedOn : <type>BOOL</type> ;
 Run : <type>BOOL</type> ;
 Fault : <type>BOOL</type> ;
END_VAR

Parameter

Axis

Value of type AXIS_REF
Axis reference.

Enable

Value of type BOOL
As long as 'Enable' is true, it continuously gets the value of the parameter.

Done

Value of type BOOL
Flag that is set to TRUE when the value is available.

74 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1)

ReadyToSwitchOn

Value of type BOOL
Flag that is set to TRUE when the drive is ready to switch on.

SwitchedOn

Value of type BOOL
Flag that is set to TRUE as long as the drive is switched on. The power stage is on.

Run

Value of type BOOL
Flag that is set to TRUE when the power stage is on and the drive can move the motor.
This output is equal to the output 'Status' of MC_Power.

Fault

Value of type BOOL
Flag that is set to TRUE when the drive has an alarm.

Description
This function block describes the drive state. See Section 4.2.2.1, “How digital inputs and outputs
manage the drive”
When the output ReadyToSwitchOn is TRUE then the drive is ready to be switched on, there-
fore the power stage can be enabled by using MC_Power. When the power stage is on and the
drive is ready to move the motor, both the SwitchedOn and Run outputs are TRUE.
If the drive is on alarm state, then the output Fault is TRUE and the other outputs are all
FALSE. In this situation the axis state is ERRORSTOP (see MC_ReadStatus).

This example is used to show how to give the power to the drive:
The input 'SwitchOn = TRUE' ;

1. rst of all it is necessary to start the management of the movement in the IEC program;

Doc. MS270928 - Ed. 13 - 28 Oct 2020 75

IEC programming for nodes www.cmz.it

2. when the axis management is started, the program reads the drive status;

3. when the drive status output 'ReadyToSwitchOn' is TRUE, the program can enable the stage;

4. when the power is on, then the output 'Status' of 'MC_Power = TRUE' and output 'Run' of 'MC_ReadDriveStatus = TRUE'.

Note
At the rst switched on procedure some drives execute an alignment procedure.

(* it starts the management of the axis movement in the IEC program *)
MC_Start_inst(Execute:=SwitchOn);
(* it reads the drive status *)
MC_DriveStatus_inst(Axis:= Axis, Enable := MC_Start_inst.Done);
(* when the drive is 'ReadyToSwitchOn' it switches on *)
MC_Power_inst(Axis:=Axis, Enable:= MC_DriveStatus_inst.ReadyToSwitchOn);

Example 4.1. start-up procedure

76 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

MC_ReadStatus
It returns, in detail, the status of the axis.

Synopsis

FUNCTION_BLOCK MC_ReadStatus

VAR_IN_OUT
 Axis : <type>AXIS_REF</type> ;
END_VAR
VAR_INPUT
 Enable : <type>BOOL</type> ;
END_VAR
VAR_OUTPUT
 Done : <type>BOOL</type> ;
 Error : <type>BOOL</type> ;
 ErrorID : <type>DINT</type> ;
 ErrorStop : <type>BOOL</type> ;
 Stopping : <type>BOOL</type> ;
 StandStill : <type>BOOL</type> ;
 DiscreteMotion : <type>BOOL</type> ;
 ContinuousMotion : <type>BOOL</type> ;
 SynchronizedMotion : <type>BOOL</type> ;
 Homing : <type>BOOL</type> ;
 Initialization : <type>BOOL</type> ;
 CostantVelocity : <type>BOOL</type> ;
 Accelerating : <type>BOOL</type> ;
 Decelerating : <type>BOOL</type> ;
END_VAR

Parameter

Axis
Value of type AXIS_REF
Axis reference.

Enable
Value of type BOOL

Doc. MS270928 - Ed. 13 - 28 Oct 2020 77

IEC programming for nodes www.cmz.it

As long as 'Enable' is true, it continuously gets the value of the parameter.

Done

Value of type BOOL
Flag that is set to TRUE when the read actual position value is available.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Errorstop

Value of type BOOL
Is TRUE when the axis is in ERRORSTOP state.

Stopping

Value of type BOOL
Flag that is set to TRUE when the axis is in STOPPING or EMERGENCYSTOPPING
state.

StandStill

Value of type BOOL
Flag that is set to TRUE when the axis is in STANDSTILL state.

DiscreteMotion

Value of type BOOL
Flag that is set to TRUE when the axis is executing a DISCRETEMOTION movement.
(For example a MC_MoveAbsolute)

ContinuosMotion

Value of type BOOL
Flag that is set to TRUE when the axis is executing a CONTINUOUSMOTION move-
ment (for example a MC_MoveCustom or MC_MoveVelocity)

SynchronizedMotion

Value of type BOOL
Flag that is set to TRUE when the axis is executing a SYNCHRONIZED movement.
Actually this output is always FALSE.

78 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Homing

Value of type BOOL
Flag that is set to TRUE when the axis is executing an HOMING procedure.

Initialization

Value of type BOOL
Flag that is set to TRUE while the axis program is executing the INITIALIZATION
procedure of the axis.

CostantVelocity

Value of type BOOL
Flag that is set to TRUE when the axis is moving with a constant theoretical velocity.

Accelerating

Value of type BOOL
It is not managed.

Decelerating

Value of type BOOL
It is not managed.

Description
This function block returns, in detail, the status of the axis according to the motion that is cur-
rently in progress. See Section 4.2.1, “Axis status” paragraph.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 79

IEC programming for nodes www.cmz.it

MC_Reset

It recovers the axis from the ERRORSTOP state.

Synopsis

FUNCTION_BLOCK MC_Reset

VAR_IN_OUT
 Axis : <type>AXIS_REF</type>;
END_VAR
VAR_INPUT
 Execute : <type>BOOL</type> ;
END_VAR
VAR_OUTPUT
 Done : <type>BOOL</type> ;
 Error : <type>BOOL</type> ;
 ErrorID : <type>DINT</type> ;
END_VAR

Parameter

Axis

Value of type AXIS_REF
Axis reference.

Execute

Value of type BOOL
At the rising edge it resets the axis.

Done

Value of type BOOL
STANDSTILL state is reached.

Error

Value of type BOOL

80 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Description
This function block makes the transition from the state ERRORSTOP to STANDSTILL by
resetting all internal axis-related errors. If it is tried to execute this function block when the axis
state is not ERRORSTOP, nothing happens.

(* it reads the status of the axis *)
MC_Status_inst(Axis:= Axis, Enable := 1);
IF (MC_Status_inst.ErrorStop = 1) THEN
 (* when there is an error it reset the Execute of MC_Reset_inst *)
 MC_Reset_inst(Axis:=Axis, Execute:=0) ;
END_IF;
(* if there is an error and the input AX_ResetCommand is TRUE then the recovery error procedure is
 started *)
MC_Resetinst(Axis:=Axis, Execute:=(MC_Status_inst.ErrorStop AND AX_ResetCommand)) ;

When the axis has an error, the ERRORSTOP output of MC_ReadStatus is TRUE. When AX_ResetCommand is TRUE the FB
MC_Reset recovers the error. If AX_ResetCommand is always TRUE this program automatically recovers the axis from an ERRORS-
TOP state.

Example 4.2. Reset error procedure

Doc. MS270928 - Ed. 13 - 28 Oct 2020 81

IEC programming for nodes www.cmz.it

MC_Start

It starts the axes program management.

Synopsis

FUNCTION_BLOCK <function>MC_Start</function>
 VAR_INPUT
 Execute : <type>BOOL</type> ;
 END_VAR

 VAR_OUTPUT
 Done : <type>BOOL</type> ;
 CommandAborted : <type>BOOL</type> ;
 Error : <type>BOOL</type> ;
 ErrorID : <type>DINT</type> ;
 END_VAR

Parameter

Execute

Value of type BOOL

At the rising edge it starts the management of the axis.

Done

Value of type BOOL

Flag that is set to TRUE when the read actual position value is available.

CommandAborted

Value of type BOOL

Flag that is set to TRUE if the command is aborted by another motion command.

Error

Value of type BOOL

Flag that is set to TRUE when an error has occurred within the function block.

82 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Description
This function block starts the management of the axis. Before the program launches a movement
it is necessary the output Done of MC_Start is TRUE.

4.3. Peripherals management (IO_)
This paragraph describes the function blocks that are necessary to manage the peripherals of the
drive: digital inputs, digital outputs, encoder, analog input and output.

4.3.1. Encoder management
In this paragraph there are the descriptions of:

• data type ENC_REF, used in a program that defines the encoder to be managed;

• the function blocks dedicated to the encoder management.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 83

IEC programming for nodes www.cmz.it

ENC_REF
It is the encoder reference.

Synopsis

TYPE Enc_Ref :
 STRUCT
 Num : INT;
 END_STRUCT;
END_TYPE

Elements

num
Value of type INT
It is an internal number that represents the encoder to be used.

Description
This Data Type is the encoder reference. It is used to declare an encoder in the project. Before to
call this function block it is important to initialize the num with the correct value related to the
encoder that has to be managed. For this purpose, it is strongly recommended to use the already
defined constants:

• IO_REF_ENC_AXIS (1) : it is the encoder used by the axis.

Note
This encoder is equal to IO_REF_ENC_AX_FEEDBACK when the feed-
back loop is closed, else it is a simulated value (=command position).

• IO_REF_ENC_AX_FEEDBACK (2) : it is the feedback encoder;

• IO_REF_ENC_AX_COMMAND (3) : it is the feedback encoder commanded posi-
tion1;

1This reference is available only on BD drives.

84 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

• IO_REF_ENC_AX_FOLLOW_ERR (5) : it is the feedback encoder position includ-
ing the position following error2;

• IO_REF_ENC_AUXILIARY (11) : it is the auxiliary encoder;

Note
It can be selected equal to IO_REF_ENC_AUX_REAL or IO_RE-
F_ENC_AUX_VIRTUAL;

• IO_REF_ENC_AUX_REAL (12) : it is the real auxiliary encoder;

• IO_REF_ENC_AUX_VIRTUAL (13) : it is the internal auxiliary encoder. It is a sim-
ulated value.

• IO_REF_ENC_AUX_FIELDBUS (14) : it is the fieldbus auxiliary encoder. It cannot
be used for the capture function.

2This reference is available only on BD drives.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 85

IEC programming for nodes www.cmz.it

CMP_REF
It is the position comparator reference.

Synopsis

TYPE Cmp_Ref :
 STRUCT
 Num : INT;
 EncRef : Enc_Ref;
 END_STRUCT;
END_TYPE

Elements

num

Value of type INT
It is an internal number that represents the comparator number.

EncRef

Value of type Enc_Ref
It defines which encoder reference has to be latched. The possible usable encoders are:

• IO_REF_ENC_AXIS (1);

• IO_REF_ENC_AX_COMMAND (3);

• IO_REF_ENC_AUXILIARY (11);

Description
This Data Type is the comparator number. It is used to define the encoder to be related to the
comparator. Before to call the function block it is important to initialize the num with the correct
value related to the comparator it has to manage. For this purpose, it is strongly recommended
to use the already defined constants:

• IO_REF_CMP_0 (0) : it is the peripheral 0 for the position comparison;

86 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

• IO_REF_CMP_1 (1) : it is the peripheral 1 for the position comparison;

Note
The position comparator cannot use all the encoder references (see ENC_REF), but on-
ly the numbers (1), (3) and (11).

Doc. MS270928 - Ed. 13 - 28 Oct 2020 87

IEC programming for nodes www.cmz.it

IO_EncGetStatus
It shows the encoder status.

Synopsis

FUNCTION_BLOCK Io_EncGetStatus
VAR_IN_OUT
 Reference : Enc_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 Init : BOOL;
 Ready : BOOL;
 Alarm : BOOL;
 AlarmCode : DINT;
 AlarmBitCode: DINT;
END_VAR

Parameter

Reference

Value of type ENC_REF
Encoder reference.

Enable

Value of type BOOL
As long as 'Enable' is true, it continuously gets the value of the Encoder status.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

88 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Init

Value of type BOOL
As long as it is TRUE, the peripheral is in initialization state.

Ready

Value of type BOOL
As long as it is TRUE, the peripheral is ready.

Alarm

Value of type BOOL
Flag that is set to TRUE when the peripheral is in alarm.

AlarmCode

Value of type DINT
When the encoder has an alarm, it shows the alarm code.

AlarmBitCode

Value of type DINT
When the encoder has an alarm, it shows the alarm code.

Description
It shows the status of the encoder. Its possible statuses are:

• Init : the encoder is executing its initialization;

• Ready : the encoder is ready to be used;

• Alarm : the encoder has an alarm.

When the program starts, the encoder is in Init state and then automatically passes to Ready. If
the encoder does not work, it goes in alarm state.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 89

IEC programming for nodes www.cmz.it

Io_EncManager
It manages the encoder.

Synopsis

FUNCTION_BLOCK Io_EncManager
VAR_IN_OUT
 Reference : Enc_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
 AlarmResume : BOOL;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 Init : BOOL;
 PreReady : BOOL;
 Ready : BOOL;
 Alarm : BOOL;
 AlarmCode : DINT;
 AlarmBitCode: DINT;
END_VAR

Parameter

Reference

Value of type ENC_REF
Encoder reference.

Enable

Value of type BOOL
As long as 'Enable' is true, it continuously gets the value of the encoder status.

AlarmResume

Value of type BOOL

90 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

When the encoder is in alarm state, it executes a resume of the alarm. It is necessary to
recover the encoder.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Init

Value of type BOOL
As long as it is TRUE, the encoder is in initialization state.

PreReady

Value of type BOOL
As long as it is TRUE, the encoder is in PreReady state. PreReady is an internal state of
the initialization procedure of the encoder.

Ready

Value of type BOOL
Flag that is set to TRUE when the encoder is ready.

Alarm

Value of type BOOL
Flag that is set to TRUE when the encoder is in alarm state.

AlarmCode

Value of type DINT
When the encoder has an alarm, it shows the alarm code.

AlarmBitCode

Value of type DINT
When the encoder has an alarm, it shows the alarm bit code.

Description
It manages the encoder. It allows to recover the encoder from an alarm state.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 91

IEC programming for nodes www.cmz.it

Io_EncReadPosition
It reads the encoder position.

Synopsis

FUNCTION_BLOCK Io_EncReadPosition
VAR_IN_OUT
 Reference : Enc_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
 RefValidation : BOOL;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 Position : DINT;
 Velocity : DINT;
 Valid : BOOL;
 Forced : BOOL;
 RefValid : BOOL;
END_VAR

Parameter

Reference

Value of type ENC_REF
Encoder reference.

Enable

Value of type BOOL
As long as 'Enable' is true, it continuously reads the encoder position.

RefValidation

Value of type BOOL
It validates the encoder position.

92 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Position

Value of type DINT
Encoder position.

Velocity

Value of type DINT
Encoder velocity.

Valid

Value of type BOOL
As long as 'Enable' is true, the position and the velocity values are valid.

Forced

Value of type BOOL
It is not used.

RefValid

Value of type BOOL
Flag that is set to TRUE when the position has been validate. After that RefValid has
been set to TRUE, this output shows if the position of the encoder is still coherent, or
some problem is happened and so the position is not coherent.

Description
It reads the encoder position.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 93

IEC programming for nodes www.cmz.it

Io_EncReadPositionOnPort
It reads the encoder position.

Synopsis

FUNCTION_BLOCK Io_EncReadPositionOnPort
VAR_IN_OUT
 Reference : Enc_Ref; (*[IO reference]*)
END_VAR
VAR_INPUT
 Enable : BOOL;
 RefValidation : BOOL;
END_VAR
VAR_OUTPUT
 Done : BOOL;
 Active : BOOL;
 Error : BOOL;
 ErrorID : DINT;
 Position : DINT;
 Velocity : DINT;
 Valid : BOOL;
 Forced : BOOL;
 RefValid : BOOL;
END_VAR

Parameter

Reference
Value of type ENC_REF
Encoder reference.

Enable
Value of type BOOL
As long as 'Enable' is true, it continuously reads the encoder position.

RefValidation
Value of type BOOL

94 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

It validates the encoder position.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Position

Value of type DINT
Encoder position.

Velocity

Value of type DINT
Encoder velocity.

Valid

Value of type BOOL
As long as 'Enable' is true, the position and the velocity values are valid.

Forced

Value of type BOOL
It is not used.

RefValid

Value of type BOOL
Flag that is set to TRUE when the position has been validate. After that RefValid has
been set to TRUE, this output shows if the position of the encoder is still coherent, or
some problem is happened and so the position is not coherent.

Description
It reads the encoder position. This function block works at the same way of Io_EncReadPosition.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 95

IEC programming for nodes www.cmz.it

Io_EncTriggerEvent
It configures the trigger event zero mark for the capture function.

Synopsis

FUNCTION_BLOCK Io_EncTriggerEvent
VAR_IN_OUT
 Reference : Enc_Ref;
END_VAR
VAR_INPUT
 Execute : BOOL;
 Abort : BOOL;
 TrgStart : BOOL;
 EdgeType : BOOL;
 OneShot : BOOL;
 NEventDriven : BYTE;
END_VAR
VAR_OUTPUT
 Done : BOOL;
 Active : BOOL;
 CommandAborted : BOOL;
 Error : BOOL;
 ErrorID : DINT;
 EnablingCapture : BOOL;
 TrgEventHandle : DINT;
END_VAR

Parameter

Reference

Value of type ENC_REF
Encoder reference.

• IO_REF_ENC_AX_FEEDBACK (2);

• IO_REF_ENC_AUX_REAL (12)1.

1This reference is valid only for BD drives.

96 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Execute

Value of type BOOL
At the rising edge it starts to configure the capture on the zero mark of the encoder.

Abort

Value of type BOOL
At the rising edge it executes an abort of the capture procedure.

TrgStart

Value of type BOOL
At the rising edge it launches the capture function. This command is executed when
the configuration is complete.

EdgeType

Value of type BOOL
Edge of the Zero Mark detection that triggers the capture
0 : falling edge;
1 : rising edge.

OneShot

Value of type BOOL
if it is TRUE, then the capture function is executed only once. If it is FALSE, then it
is automatically restarted.

NEventDriven

Value of type INT
Selector of the Capture Peripheral:

• 0 : the drive automatically selects the rst Capture Peripheral that is not in use (free);

• SYS_EVENT_CAPTURE_A (6) : it selects the Capture Peripheral A;

• SYS_EVENT_CAPTURE_B (7) : it selects the Capture Peripheral B;

Done

Value of type BOOL
The position capture on the Zero Mark detection has been executed.

Active

Value of type BOOL
It is waiting the Zero Mark detection.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 97

IEC programming for nodes www.cmz.it

Error

Value of type BOOL

Flag that is set to TRUE when an error has occurred within the Function Block.

ErrorID

Value of type DINT

Error identification code (see Table A.1).

EnablingCapture

Value of type BOOL

When this Function Block completes the configuration of the event, this output is set
to TRUE. This output is an input for the Function Block Io_EncEventCaptureValue.

TrgEventHandle

Value of type DINT

It is an internal identification of the event. The Function Block itself calculates it.

NEventActived

Value of type INT

It indicates which Capture Peripheral has been activated by the Function Block:

• SYS_EVENT_CAPTURE_A (6) : Capture Peripheral A;

• SYS_EVENT_CAPTURE_B (7) : Capture Peripheral B;

Description
This Function Block must be used with Io_EncEventCaptureValue. They configure and manage
the capture function of the encoder position when the encoder position passes through the zero
mark. The Function Block inputs must be used by following this sequence:

1. to prepare the inputs EdgeType, OneShot;

2. when the Function Block sees a positive edge on the input Execute, it starts to configure
the capture function into the drive and also it calculates the TrgEventHandle. When
it finishes its internal operations, the output EnablingCapture is set to TRUE. This
output is used by the Function Block Io_EncEventCaptureValue to complete the con-
figuration of the capture function;

3. when this second Function Block finishes its operations, the input TrgStart is set to
TRUE. At this moment the capture function starts. The output Active is set to TRUE;

98 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

4. when the capture event happens then the output Active returns to FALSE and the
output Done is set to TRUE.

See also Section 4.5.2, “Capture example”.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 99

IEC programming for nodes www.cmz.it

Io_EncEventCaptureValue
It completes the configurations of the capture function. It defines which is the value to be cap-
tured.

Synopsis

FUNCTION_BLOCK Io_EncEventCaptureValue
VAR_IN_OUT
 Reference : Enc_Ref;
END_VAR
VAR_INPUT
 Execute : BOOL;
 Abort : BOOL;
 TrgEventHandle: DINT;
 ValueType : INT;
END_VAR
VAR_OUTPUT
 Done : BOOL;
 Active : BOOL;
 CommandAborted: BOOL;
 Error : BOOL;
 ErrorID : DINT;
 CaptureEnabled: BOOL;
 CapturedValue : DINT;
END_VAR

Parameter

Reference

Value of type ENC_REF
It defines which encoder reference has to be consider as capture reference. The possible
usable encoders are:

• IO_REF_ENC_AXIS (1);

• IO_REF_ENC_AX_FEEDBACK (2);

• IO_REF_ENC_AX_FOLLOW_ERR (5);

100 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

• IO_REF_ENC_AUXILIARY (11);

• IO_REF_ENC_AUX_REAL (12)1;

• IO_REF_ENC_AUX_VIRTUAL (13)2;

Execute

Value of type BOOL
At the rising edge it configures the value for the capture function. The value is the Val-
ueType of the encoder reference (Reference).

Abort

Value of type BOOL
At the rising edge it executes the abort of the capture procedure.

TrgEventHandle

Value of type DINT
It is the internal identification of the event that defines when the capture function has to
capture the reference encoder position. This value is calculated by the Function Block
which configures the event. See Io_EncTriggerEvent, Io_DInpTriggerEvent.

ValueType

Value of type INT
It defines which type of value the capture function has to capture. The default value is
the position of the reference encoder selected. It is not allowed to change it.

Done

Value of type BOOL
The position has been captured.

Active

Value of type BOOL
As long as 'Active' is true, the Function Block keeps waiting the happening of the event.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT

1Available only for BD series.
2Available only for BD series, except for IBD ange 60.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 101

IEC programming for nodes www.cmz.it

Error identification code (see Table A.1).

CaptureEnabled

Value of type BOOL
When this function block completes the configuration of the position that the capture
function has to capture, this output is set to TRUE. This output is usually connected
to the input TrgStart of the function block that configures the event (see Io_EncTrig-
gerEvent or Io_DInpTriggerEvent).

CapturedValue

Value of type DINT
When the position has been captured, the output Done is set to TRUE and in this out-
put there is the value of the captured position.

Description
This function block must be used with another one that configures the event for the capture
function. (See Io_EncTriggerEvent or Io_DInpTriggerEvent).
The capture function is used to capture a position when a particular event happens. To configure
the capture function is necessary to define two characteristics:

• the event that causes the capture. The available events are: zero mark (Io_EncTrig-
gerEvent) and the home digital input (Io_DInpTriggerEvent);

• the position that the function captures when the event happens: this function block is
necessary to configure it.

The management for this function block is:

1. when the function block that configures the event sets its EnablingCapture output,
then the input Execute of this function block has to detect a rising edge trigger. The
input Execute is usually connected to the output EnablingCapture of the Io_Enc-
TriggerEvent or Io_DInpTriggerEvent. After this rising edge, the function block con-
figures the position to be captured according to the ValueType. When it finishes, the
outputs CaptureEnabled and Active are both set to TRUE;

2. the output CaptureEnabled is usually connected to TrgStart of Io_EncTrig-
gerEvent or Io_DInpTriggerEvent. When TrgStart has a rising edge, the capture func-
tion starts. When the event happens and the position has been captured, then the out-
put Done of this function block (Io_EncEventCaptureValue) is set to TRUE and in
the output CapturedValue there is the captured value.

See also Section 4.5.2, “Capture example”.

102 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Io_EncComparator
It compares the encoder position.

Synopsis

FUNCTION Io_EncComparator
VAR_IN_OUT
 Reference : Cmp_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
 Direction : BOOL;
 Position : DINT;
END_VAR

Parameter

Reference

Value of type CMP_REF
Comparator reference

• IO_REF_CMP_0 (0);

• IO_REF_CMP_1 (1).

Note
The encoder references (ENC_REF) that can be linked to the comparator refer-
ence (CMP_REF) can be only:

• IO_REF_ENC_AXIS (1);

• IO_REF_ENC_AX_COMMAND (3);

• IO_REF_ENC_AUXILIARY (11).

Enable

Value of type BOOL

Doc. MS270928 - Ed. 13 - 28 Oct 2020 103

IEC programming for nodes www.cmz.it

Get the value of the status continuously while enabled.

Direction

Value of type BOOL
Defines the positive direction counting of the position comparison. If its value is FALSE
the comparator verifies if the reference position is exceeded from lower to higher values.
If its value is TRUE the comparator verifies if the reference position is exceeded from
higher to lower values.

Position

Value of type DINT
Value of the position to be exceeded.

Description
It sets the position comparator functioning: the encoder reference, the counting direction and
the position reference in order to plan the INT PROGRAM through the SYS_EnEventInt func-
tion.

4.3.2. Digital inputs management
In this paragraph there are the descriptions of:

• data type DINP_REF, used in a program to define the digital input to be managed;

• the function blocks dedicated to the digital inputs management.

104 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

DINP_REF
It is the digital inputs bench reference.

Synopsis

TYPE DInp_Ref :
 STRUCT
 Num : INT;
 END_STRUCT;
END_TYPE

Elements

num

Value of type INT
It is an internal number that represents the digital inputs bench to be used.

Description
This Data Type is the digital inputs bench reference. It is used to declare the digital inputs in the
project. Before to call this function block it is important to initialize the num with the correct
value related to the digital inputs that has to be managed. For this purpose, it is strongly recom-
mended to use the already defined constants:

• IO_REF_DI_PHYSICAL_0 (1) : rst physical bank;

• IO_REF_DI_PHYSICAL_1 (2) : second physical bank1;

1This bank is present on SVM and BD series only.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 105

IEC programming for nodes www.cmz.it

Io_DInpGetStatus
It shows the digital inputs status.

Synopsis

FUNCTION_BLOCK Io_DInpGetStatus
VAR_IN_OUT
 Reference : DInp_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 Init : BOOL;
 Ready : BOOL;
 Alarm : BOOL;
 AlarmCode : DINT;
 AlarmBitCode: DINT;
END_VAR

Parameter

Reference

Value of type DINP_REF
Digital inputs reference.

Enable

Value of type BOOL
As long as 'Enable' is true, it continuously gets the value of the digital inputs status.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

106 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

ErrorID

Value of type DINT
Error identification code (see Table A.1)

Init

Value of type BOOL
Flag that is set to TRUE when the peripheral is in initialization state.

Ready

Value of type BOOL
Flag that is set to TRUE when the peripheral is ready.

Alarm

Value of type BOOL
Flag that is set to TRUE when the peripheral is in alarm.

AlarmCode

Value of type DINT
When the peripheral has an alarm, it shows the alarm code.

AlarmBitCode

Value of type DINT
When the peripheral has an alarm, it shows the alarm code.

Description
It shows the status of the peripheral. The statuses are:

• Init : the peripheral is executing its initialization;

• Ready : the peripheral is ready to be used;

• Alarm : the peripheral has an alarm.

When the program starts, the peripheral is in Init state and then automatically passes to Ready.
If the digital inputs do not work, then the peripheral goes in alarm state.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 107

IEC programming for nodes www.cmz.it

Io_DInpManager
It manages the peripheral digital inputs.

Synopsis

FUNCTION_BLOCK Io_DInpManager
VAR_IN_OUT
 Reference : DInp_Ref; (*[IO reference]*)
END_VAR
VAR_INPUT
 Enable : BOOL;
 AlarmResume : BOOL;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 Init : BOOL;
 PreReady : BOOL;
 Ready : BOOL;
 Alarm : BOOL;
 AlarmCode : DINT;
 AlarmBitCode: DINT;
END_VAR

Parameter

Reference

Value of type DINP_REF
Digital inputs reference.

Enable

Value of type BOOL
As long as 'Enable' is true, it continuously manages the digital inputs.

AlarmResume

Value of type BOOL

108 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

When the peripheral is in alarm state, it executes a resume of the alarm. It is necessary
to recover the peripheral.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1)

Init

Value of type BOOL
As long as it is TRUE, the peripheral is in initialization state.

PreReady

Value of type BOOL
As long as it is TRUE, the peripheral is in PreReady state. PreReady is an internal state
of the initialization procedure of the peripheral.

Ready

Value of type BOOL
As long as it is TRUE, the peripheral is ready.

Alarm

Value of type BOOL
Flag that is set to TRUE when the peripheral is in alarm.

AlarmCode

Value of type DINT
When the peripheral has an alarm, it shows the alarm code.

AlarmBitCode

Value of type DINT
When the peripheral has an alarm, it shows the alarm code.

Description
It manages the peripheral. It permits to recover an alarm in the peripheral.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 109

IEC programming for nodes www.cmz.it

Io_DInpReadStatus
It reads the status of the digital inputs.

Synopsis

FUNCTION_BLOCK Io_DInpReadStatus
VAR_IN_OUT
 Reference : DInp_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 InpStatus : BYTE;
 Valid : BOOL;
 Forced : BOOL;
END_VAR

Parameter

Reference
Value of type DINP_REF
Digital inputs reference.

Enable
Value of type BOOL
As long as 'Enable' is true, it continuously gets the value of the status of the digital in-
puts.

Error
Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID
Value of type DINT

110 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Error identification code (see Table A.1).

InpStatus

Value of type BYTE
Digital inputs status when the output Valid is TRUE. Each bit is related to a digital
input, according to the bank selected by the DINP_REF.

Valid

Value of type BOOL
Is TRUE when the output InpStatus has a valid value.

Forced

Value of type BOOL
It is not used.

Description
It reads the status of the digital inputs selected in the DINP_REF reference input.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 111

IEC programming for nodes www.cmz.it

Io_DInpReadStatusOnPort
It reads the status of the digital inputs.

Synopsis

FUNCTION_BLOCK Io_DInpReadStatusOnPort
VAR_IN_OUT
 Reference : DInp_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 InpStatus : BYTE;
 Valid : BOOL;
 Forced : BOOL;
END_VAR

Parameter

Reference
Value of type DINP_REF
Digital inputs reference.

Enable
Value of type BOOL
As long as 'Enable' is true, it continuously gets the value of the status of the digital in-
puts.

Error
Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID
Value of type DINT

112 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Error identification code (see Table A.1)

InpStatus

Value of type BYTE
Digital inputs status when the output Valid is TRUE. Each bit is related to a digital
input, according to the bank selected by the DINP_REF.

Valid

Value of type BOOL
Is TRUE when the output InpStatus has a valid value.

Forced

Value of type BOOL
It is not used.

Description
It reads the status of the digital inputs selected in the DINP_REF reference input. This function
block works at the same way of Io_DInpReadStatus.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 113

IEC programming for nodes www.cmz.it

Io_DInpTriggerEvent
It configures the capture function trigger event on an edge of a particular digital input.

Synopsis

FUNCTION_BLOCK Io_DInpTriggerEvent
VAR_IN_OUT
 Reference : DInp_Ref;
END_VAR
VAR_INPUT
 Execute : BOOL;
 Abort : BOOL;
 TrgStart : BOOL;
 NBit : BYTE;
 EdgeType : BOOL;
 OneShot : BOOL;
 NEventDriven : BYTE;
END_VAR
VAR_OUTPUT
 Done : BOOL;
 Active : BOOL;
 CommandAborted : BOOL;
 Error : BOOL;
 ErrorID : DINT;
 EnablingCapture : BOOL;
 TrgEventHandle : DINT;
END_VAR

Parameter

Reference

Value of type DINP_REF
Digital inputs reference.

Drive Reference NBit Associated Inputs

SD IO_REF_DI_PHYSICAL_0 2 In2

114 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Drive Reference NBit Associated Inputs
3 In3

0 In8
IBD IO_REF_DI_PHYSICAL_1

1 In9

3 In3
NBD IO_REF_DI_PHYSICAL_0

4 In4

2 In2
IBD .60 IO_REF_DI_PHYSICAL_0

3 In3

Table 4.1. Bit/Input reference

Execute

Value of type BOOL

At the rising edge it starts to configure the trigger event. Its characteristics are in the
inputs NBit and EdgeEvent.

Abort

Value of type BOOL

At the rising edge it executes an abort of the capture procedure.

TrgStart

Value of type BOOL

At the rising edge it launches the capture function. This command is executed when
the configuration is complete.

NBit

Value of type BYTE

It defines the number of the digital input selected to be the trigger for the capture func-
tion. The bit number NBit is related to the bank defined through the DINP_REF ref-
erence:

• For Digital input 0..7 the reference bank is IO_REF_DI_PHYSICAL_0, NBit 0..7;

• For Digital input 8..15 the reference bank is IO_REF_DI_PHYSICAL_1, NBit 0..7
(NBit 0 = Dig. input 8, etc..);

EdgeType

Value of type BOOL

0 : falling edge;
1 : rising edge.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 115

IEC programming for nodes www.cmz.it

OneShot

Value of type BOOL
if it is TRUE, then the capture function is executed only once. If it is FALSE, then it
is automatically restarted.

NEventDriven

Value of type BYTE
It is not used.

Done

Value of type BOOL
The capture has been executed.

Active

Value of type BOOL
It is waiting for the event happening.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

EnablingCapture

Value of type BOOL
When this function block completes the configuration of the event, this output is set
to TRUE. This output is an input for the function block Io_EncEventCaptureValue.

TrgEventHandle

Value of type DINT
It is an internal identification of the event. The function block itself calculates it.

Description
This function block must be used with Io_EncEventCaptureValue. They configure and manage
the capture of the encoder position function when the event in the digital input happens. The
function block inputs has to follow this sequence:

116 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

1. it prepares the inputs NBit, EdgeType, OneShot;

2. when the function block detects a positive edge in the input Execute, it starts to con-
figure the capture function into the drive and also to calculate the TrgEventHandle.
When it finishes its internal operations, it sets to TRUE the output EnablingCapture.
This output is used by the function block Io_EncEventCaptureValue to complete the
configuration of the capture function;

3. when this second function block finishes its operations, then it sets to TRUE the in-
put TrgStart. In this moment the capture function starts. The output Active is set to
TRUE;

4. when the capture has been made, the output Active returns to FALSE and the output
Done is set to TRUE.

See also Section 4.5.2, “Capture example”.

4.3.3. Digital outputs management
In this paragraph there are the descriptions of:

• data type DOUT_REF, used in a program to define the digital outputs to be managed;

• the function blocks dedicated to the digital outputs management.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 117

IEC programming for nodes www.cmz.it

DOUT_REF
It is the digital outputs bench reference.

Synopsis

TYPE DOut_Ref :
 STRUCT
 Num : INT;
 END_STRUCT;
END_TYPE

Elements

num

Value of type INT
It is an internal number that represents the digital outputs bench to be used.

Description
This Data Type is the digital outputs bench reference. It is used to declare the digital outputs
in the project. Before to call this function block it is important to initialize the num with the
correct value related to the digital outputs that has to be managed. For this purpose, it is strongly
recommended to use the already defined constant:

• IO_REF_DO_PHYSICAL_0 (1) : rst physical digital output bank;

118 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Io_DOutGetStatus
It shows the digital outputs status.

Synopsis

FUNCTION_BLOCK Io_DOutGetStatus
VAR_IN_OUT
 Reference : DOut_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 Init : BOOL;
 Ready : BOOL;
 Alarm : BOOL;
 AlarmCode : DINT;
 AlarmBitCode: DINT;
END_VAR

Parameter

Reference

Value of type DOUT_REF
Digital outputs reference

Enable

Value of type BOOL
As long as 'Enable' is true, it continuously gets the value of the digital outputs status.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 119

IEC programming for nodes www.cmz.it

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Init

Value of type BOOL
As long as it is TRUE, the peripheral is in initialization state.

Ready

Value of type BOOL
As long as it is TRUE, the peripheral is ready.

Alarm

Value of type BOOL
As long as it is TRUE, the peripheral is in alarm.

AlarmCode

Value of type DINT
When the peripheral has an alarm, it shows the alarm code.

AlarmBitCode

Value of type DINT
When the peripheral has an alarm, it shows the alarm code.

Description
It shows the status of the peripheral. The statuses are:

• Init : the peripheral is executing its initialization;

• Ready : the peripheral is ready to be used;

• Alarm : the peripheral has an alarm.

When the program starts, the peripheral is in Init state and then automatically passes to Ready.
If the digital outputs do not work, then the peripheral goes in alarm state.

120 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Io_DOutManager
It manages the peripheral digital outputs.

Synopsis

FUNCTION_BLOCK Io_DOutManager
VAR_IN_OUT
 Reference : DOut_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
 AlarmResume : BOOL;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 Init : BOOL;
 PreReady : BOOL;
 Ready : BOOL;
 Alarm : BOOL;
 AlarmCode : DINT;
 AlarmBitCode: DINT;
END_VAR

Parameter

Reference

Value of type DOUT_REF
Digital outputs reference.

Enable

Value of type BOOL
As long as 'Enable' is true, it continuously manages the digital outputs.

AlarmResume

Value of type BOOL

Doc. MS270928 - Ed. 13 - 28 Oct 2020 121

IEC programming for nodes www.cmz.it

When the peripheral is in alarm state, it executes a resume of the alarm. It is necessary
to recover the peripheral.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Init

Value of type BOOL
Flag that is set to TRUE when the peripheral is in initialization state.

PreReady

Value of type BOOL
Flag that is set to TRUE when the peripheral is PreReady. PreReady is an internal state
of the initialization procedure of the peripheral.

Ready

Value of type BOOL
As long as it is TRUE, the peripheral is ready.

Alarm

Value of type BOOL
Flag that is set to TRUE when the peripheral is in alarm.

AlarmCode

Value of type DINT
When the peripheral has an alarm, it shows the alarm code.

AlarmBitCode

Value of type DINT
When the peripheral has an alarm, it shows the alarm code.

Description
It manages the peripheral. It permits to recover an alarm in the peripheral.

122 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Io_DOutWriteStatus
It writes the status of the digital outputs.

Synopsis

FUNCTION_BLOCK Io_DOutWriteStatus
VAR_IN_OUT
 Reference : DOut_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
 OutStatus : BYTE;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 Valid : BOOL;
 Forced : BOOL;
END_VAR

Parameter

Reference

Value of type DOUT_REF
Digital outputs reference.

Enable

Value of type BOOL
As long as 'Enable' is true, it continuously writes the value of the outputs status.

OutStatus

Value of type BYTE
It is the value that has to be written on the digital outputs status.

Error

Value of type BOOL

Doc. MS270928 - Ed. 13 - 28 Oct 2020 123

IEC programming for nodes www.cmz.it

Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Valid

Value of type BOOL
Is TRUE when the digital outputs are valid.

Forced

Value of type BOOL
It is not used.

Description
It writes the value of the input OutStatus on the digital outputs that are selected by the Reference.

124 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Io_DOutWriteStatusOnPort
It writes the status of the digital outputs.

Synopsis

FUNCTION_BLOCK Io_DOutWriteStatusOnPort
VAR_IN_OUT
 Reference : DOut_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
 OutStatus : BYTE;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 Valid : BOOL;
 Forced : BOOL;
END_VAR

Parameter

Reference

Value of type DOUT_REF
Digital outputs reference.

Enable

Value of type BOOL
As long as 'Enable' is true, it continuously writes the value of the outputs status.

OutStatus

Value of type BYTE
It is the value that has to be written on the digital outputs status.

Error

Value of type BOOL

Doc. MS270928 - Ed. 13 - 28 Oct 2020 125

IEC programming for nodes www.cmz.it

Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1).

Valid

Value of type BOOL
Is TRUE when the digital outputs are valid.

Forced

Value of type BOOL
It is not used.

Description
It writes the value of the input OutStatus on the digital outputs that are selected by the Reference.

4.3.4. Analog input management
In this paragraph there are the descriptions of:

• data type AINP_REF used in a program to define the analog inputs to be managed;

• the function blocks dedicated to the analog inputs management.

126 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

AINP_REF
It is the analog input reference.

Synopsis

TYPE
 AXIS_REF : STRUCT
 num : <type>INT</type>;
 END_STRUCT;
END_TYPE

Elements

num

Value of type INT
It is an internal number that represents the analog input bench to be used.

Description
This Data Type is the analog input bench reference. It is used to declare the analog input in the
project. Before to call this function block it is important to initialize the num with the correct
value according to the analog input it has to manage. For this purpose, it is strongly recommended
to use the already defined constants:

• IO_REF_AI_PHYSICAL_0 (1) : physical analog input;

• IO_REF_AI_TORQUE (9) : torque monitor;

• IO_REF_AI_I2T (10) : I2T monitor;

Doc. MS270928 - Ed. 13 - 28 Oct 2020 127

IEC programming for nodes www.cmz.it

Io_AInpGetStatus
It shows the analog input status.

Synopsis

FUNCTION_BLOCK Io_AInpGetStatus
VAR_IN_OUT
 Reference : AInp_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 Init : BOOL;
 Ready : BOOL;
 Alarm : BOOL;
 AlarmCode : DINT;
 AlarmBitCode: DINT;
END_VAR

Parameter

Reference

Value of type AINP_REF
Analog inputs reference.

Enable

Value of type BOOL
As long as 'Enable' is true, it continuously gets the value of the status of the analog input.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

128 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

ErrorID

Value of type DINT
Error identification code (see Table A.1)

Init

Value of type BOOL
As long as it is TRUE, the peripheral is in initialization state.

Ready

Value of type BOOL
As long as it is TRUE, the peripheral is ready.

Alarm

Value of type BOOL
Flag that is set to TRUE when the peripheral is in alarm.

AlarmCode

Value of type DINT
When the peripheral has an alarm, it shows the alarm code.

AlarmBitCode

Value of type DINT
When the peripheral has an alarm, it shows the alarm code.

Description
It shows the status of the peripheral. The statuses are:

• Init : the peripheral is executing its initialization;

• Ready : the peripheral is ready to be used;

• Alarm : the peripheral has an alarm.

When the program starts, the peripheral is in Init state and then automatically passes to Ready.
If the analog input does not work, then the peripheral goes in alarm state.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 129

IEC programming for nodes www.cmz.it

Io_AInpManager
It manages the peripheral analog input.

Synopsis

FUNCTION_BLOCK Io_AInpManager
VAR_IN_OUT
 Reference : AInp_Ref; (*[IO reference]*)
END_VAR
VAR_INPUT
 Enable : BOOL;
 AlarmResume : BOOL;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 Init : BOOL;
 PreReady : BOOL;
 Ready : BOOL;
 Alarm : BOOL;
 AlarmCode : DINT;
 AlarmBitCode: DINT;
END_VAR

Parameter

Reference
Value of type AINP_REF
Analog input reference.

Enable
Value of type BOOL
As long as 'Enable' is true, it continuously gets the value of the analog input peripheral
status.

AlarmResume
Value of type BOOL

130 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

When the peripheral is in alarm state, it executes a resume of the alarm. It is necessary
to recover the peripheral.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT
Error identification code (see Table A.1)

Init

Value of type BOOL
As long as it is TRUE, the peripheral is in initialization state.

PreReady

Value of type BOOL
As long as it is TRUE, the peripheral is in PreReady state. PreReady is an internal state
of the initialization procedure of the peripheral.

Ready

Value of type BOOL
As long as it is TRUE, the peripheral is ready.

Alarm

Value of type BOOL
As long as it is TRUE, the peripheral is in alarm.

AlarmCode

Value of type DINT
When the peripheral has an alarm it shows the alarm code

AlarmBitCode

Value of type DINT
When the peripheral has an alarm it shows the alarm code.

Description
It manages the peripheral. It permits to recover an alarm occurred in the peripheral.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 131

IEC programming for nodes www.cmz.it

Io_AInpReadValue
It reads the value of the analog input.

Synopsis

FUNCTION_BLOCK Io_AInpReadValue
VAR_IN_OUT
 Reference : AInp_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 Value : DINT;
 Valid : BOOL;
 Forced : BOOL;
END_VAR

Parameter

Reference

Value of type AINP_REF
Analog input reference.

Enable

Value of type BOOL
As long as 'Enable' is true, it continuously reads the value of the analog input.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT

132 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Error identification (see Table A.1).

Value

Value of type DINT
Analog input value when the output Valid is TRUE.

Valid

Value of type BOOL
If it is TRUE it means that the parameter Value has a valid value.

Forced

Value of type BOOL
It is not used

Description
It reads the value of the analog input selected in the reference.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 133

IEC programming for nodes www.cmz.it

Io_AInpReadValueOnPort
It reads the value of the analog input.

Synopsis

FUNCTION_BLOCK Io_AInpReadValueOnPort
VAR_IN_OUT
 Reference : AInp_Ref;
END_VAR
VAR_INPUT
 Enable : BOOL;
END_VAR
VAR_OUTPUT
 Error : BOOL;
 ErrorID : DINT;
 Value : DINT;
 Valid : BOOL;
 Forced : BOOL;
END_VAR

Parameter

Reference

Value of type AINP_REF
Analog input reference.

Enable

Value of type BOOL
As long as 'Enable' is true, it continuously gets the value of the analog input.

Error

Value of type BOOL
Flag that is set to TRUE when an error has occurred within the function block.

ErrorID

Value of type DINT

134 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Error identification code (see Table A.1).

Value

Value of type DINT
Analog input value when the output Valid is TRUE.

Valid

Value of type BOOL
If it is TRUE it means that the parameter Value has a valid value.

Forced

Value of type BOOL
It is not used

Description
It reads the value of the analog input selected in the reference.

4.4. Utility library (Ut_)
This paragraph describes the functions of the utility library. The library contains mathematical
functions and features for the management of solar.

Note
These functionalities are not supported in the IBD.

4.4.1. Functions and function blocks list

Doc. MS270928 - Ed. 13 - 28 Oct 2020 135

IEC programming for nodes www.cmz.it

Ut_ArcCos
It calculates the angle in degrees with resolution E-6.

Synopsis

FUNCTION Ut_ArcCos : DINT
 VAR_INPUT
 Cosine : DINT ;
 END_VAR

Return value
Value of type DINT
The angle in degrees with resolution E-6 (1000000 = 1).

Parameter

Cosine

Value of type DINT
It is the cosine of the angle with resolution E-8 (100000000 = 1). Its range starts from
-100000000 to +100000000. The value is saturated when it exceeds the range.

Description
This function calculates the angle in degrees with resolution E-6.

136 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Ut_Cos
It calculates the cosine of the angle with resolution E-8.

Synopsis

FUNCTION Ut_Cos : DINT
 VAR_INPUT
 Angle : DINT ;
 END_VAR

Return value
Value of type DINT
The cosine of the angle with resolution E-8.

Parameter

Angle

Value of type DINT
It is the angle in degree with resolution E-6. Any value is valid.

Description
This function calculates the cosine of the angle with resolution E-8.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 137

IEC programming for nodes www.cmz.it

Ut_ArcSin
It calculates the angle in degrees with resolution E-6.

Synopsis

FUNCTION Ut_ArcSin : DINT
 VAR_INPUT
 Sine : DINT ;
 END_VAR

Return value
Value of type DINT
The angle in degrees with resolution E-6 (1000000 = 1).

Parameter

Sine

Value of type DINT
It is the sine of the angle with resolution E-8 (100000000 = 1). Its range starts from
-100000000 to +100000000. The value is saturated when it exceeds the range.

Description
This function calculates the angle in degrees with resolution E-6.

138 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Ut_Sin
It calculates the sine of the angle with resolution E-8.

Synopsis

FUNCTION Ut_Sin : DINT
 VAR_INPUT
 Angle : DINT ;
 END_VAR

Return value
Value of type DINT
The sine of the angle with resolution E-8.

Parameter

Angle

Value of type DINT
It is the angle in degree with resolution E-6. Any value is valid.

Description
This function calculates the sine of the angle with resolution E-8.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 139

IEC programming for nodes www.cmz.it

Ut_MTracky
It calculates the angle of the single axis tracker (M-Tracky type).

Synopsis

FUNCTION Ut_MTracky : BOOL
 VAR_INPUT
 Altitude : INT ;
 AxisAngle : INT ;
 Azimuth : INT ;
 END_VAR
 VAR_OUTPUT
 Result : INT ;
 END_VAR

Return value
Value of type BOOL
If 0 then there are no errors.

Parameter

Altitude

Value of type INT
It is the altitude in hundredths of a degree. Its range starts from -18000 to +18000.

AxisAngle

Value of type INT
It is the angle of rotation axis in hundredths of a degree. Its range starts from -18000
to +18000.

Azimuth

Value of type INT
It is the azimuth in hundredths of a degree. Its range starts from -18000 to +18000.

140 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Result

Value of type INT
The angle of the single axis tracker (M-Tracky type) in hundredths of a degree.

Description
This function calculates the angle of the single axis tracker (M-Tracky type).

Doc. MS270928 - Ed. 13 - 28 Oct 2020 141

IEC programming for nodes www.cmz.it

Ut_SolarPosition
It calculates the position of the sun.

Synopsis

FUNCTION Ut_SolarPosition : BOOL
 VAR_INPUT
 DayOfYear : INT ;
 MinOfDay : INT ;
 Latitude : INT ;
 END_VAR
 VAR_OUTPUT
 Altitude : INT ;
 Azimuth : INT ;
 END_VAR

Return value
Value of type BOOL
If 0 then there are no errors.

Parameter

DayOfYear

Value of type INT
It is the days of the year. Its range starts from 1 to 366.

MinOfDay

Value of type INT
It is the minute of the day. Its range starts from 0 to 1439.

Latitude

Value of type INT
It is the latitude in hundredths of a degree. Its range starts from -9000 to +9000.

142 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Altitude

Value of type INT
Altitude in hundredths of a degree.

Azimuth

Value of type INT
Azimuth in hundredths of a degree.

Description
This function calculates the position of the sun.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 143

IEC programming for nodes www.cmz.it

Ut_TrueSolarTime
It calculates the local solar time in minutes.

Synopsis

FUNCTION Ut_TrueSolarTime : BOOL
 VAR_INPUT
 DayOfYear : INT ;
 MinOfDay : INT ;
 Longitude : INT ;
 END_VAR
 VAR_OUTPUT
 TrueSolarTime : INT ;
 END_VAR

Return value
Value of type BOOL
If 0 then there are no errors.

Parameter

DayOfYear
Value of type INT
It is the day of the year. Its range starts from 1 to 366.

MinOfDay
Value of type INT
It is the minute of the day. Its range starts from 0 to 1439.

Longitude
Value of type INT
It is the longitude in hundredths of a degree. Its range starts from -18000 to +18000.

TrueSolarTime
Value of type INT

144 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

Local solar time in minutes.

Description
This function calculates the local solar time in minutes.

4.5. Examples
There are three examples.

4.5.1. Axis management
A simple example of an axis management:

1. ENABLE : when the drive becomes ReadyToSwitchOn the MC_Power_inst is set
to TRUE, then the drive is SwitchOn.

2. RESET : when the axis has an error and Reset = TRUE, the MC_Reset recovers the
error;

3. HOMING : it writes the velocities for the homing procedure and then it executes the
homing movement;

4. MOVEMENT : it continuously moves an axis from position Move1Pos to Move2Pos.

(* GLOBAL variables declarations *)VAR_GLOBAL(* STRUCT *)
 Axis : AXIS_REF ;

 (* instances of the function block *)
 MC_DriveStatus_inst : MC_ReadDriveStatus ;
 MC_Status_inst : MC_ReadStatus ;
 MC_Power_inst : MC_Power ;

 (* DINT *)
 ActPos : DINT ;
 ActVel : DINT ;
 CmdPos : DINT ;
 CmdVel : DINT ;
 VelFindMicro : DINT := -4096 ;
 VelOutMicro : DINT := 2048 ;
 HomePosition : DINT := 0;
 VelJog : DINT := 8192 ;
 Move1Pos : DINT := 81920 ;

Doc. MS270928 - Ed. 13 - 28 Oct 2020 145

IEC programming for nodes www.cmz.it

 Move1Vel : DINT := 4096 ;
 Move1Acc : DINT := 40960 ;
 Move2Pos : DINT := 0 ;
 Move2Vel : DINT := 8192 ;
 Move2Acc : DINT := 40960 ;
 EmgDeceleration : DINT := 409600;

 (* INT *)
 HomeMode : INT := 5 ;
 iStep : INT := 0 ;

 (* BOOL *)
 Reset : BOOL := FALSE ;
 Stop : BOOL := FALSE ;
 StartMove : BOOL := TRUE ;
 Move1Done : BOOL := 0 ;
 Move2Done : BOOL := FALSE;
 err : BOOL ;
 MC_Move1_inst : MC_MoveAbsolute ;
 MC_Move2_inst : MC_MoveAbsolute ;
END_VAR

PROGRAM main

VAR
 MC_Start_inst : MC_Start ;
 MC_Reset_inst : MC_Reset ;
 MC_ReadActPos_inst : MC_ReadActualPosition ;
 MC_ReadPos_inst : MC_ReadCommandPosition ;
 MC_Home_inst : MC_Home;
 MC_Stop_inst : MC_Stop ;
END_VAR

Axis.Num := MC_REF_AXIS_MAIN ;

(* it starts the axis management by IEC program *)
MC_Start_inst(Execute:=1);

(* it reads the status of the drive *)
MC_DriveStatus_inst(Axis:= Axis,
 Enable := MC_Start_inst.Done);
(* switch on - switch off *)
MC_Power_inst(Axis:=Axis,

146 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

 Enable:= MC_DriveStatus_inst.ReadyToSwitchOn) ;

(* it reads the status of the axis *)
MC_Status_inst(Axis:= Axis, Enable := MC_Start_inst.Done);

(* it reads the real and command positions *)
MC_ReadPos_inst(Axis:=Axis, Enable:= TRUE,
 Position=>CmdPos,
 Velocity=>CmdVel);
MC_ReadActPos_inst(Axis:=Axis, Enable:=TRUE,
 Position=>ActPos,
 Velocity=>ActVel);

(* it recovers an error *)
IF (MC_Status_inst.ErrorStop = 1) AND Reset THEN
 MC_Reset_inst(Axis:=Axis, Execute:=0) ;
 MC_Reset_inst.Execute := 1 ;
 iStep := 0 ;
END_IF;
MC_Reset_inst(Axis:=Axis) ;

(* it stops the movement *)
IF Stop THEN
 MC_Stop_inst(Axis:=Axis, Execute :=0);
 MC_Stop_inst.Execute := 1 ;
 iStep := 0 ;
END_IF;
MC_Stop_inst(Axis:= Axis,
 Deceleration:= Move1Acc) ;

CASE iStep OF
 0 :
 (* Homing Procedure *)
 MC_Home_inst.Execute := 0 ;
 MC_Move1_inst.Execute := 0;
 MC_Move2_inst.Execute := 0;
 IF StartMove AND MC_Power_inst.Status THEN
 MC_Home_inst.Execute := 1 ;
 StartMove := 0 ;
 iStep := 1 ;
 END_IF;

 1 :

Doc. MS270928 - Ed. 13 - 28 Oct 2020 147

IEC programming for nodes www.cmz.it

 (* at the end of the homing it starts the movement *)
 IF MC_Home_inst.Done THEN
 MC_Move1_inst.Execute := 1;
 iStep := 2 ;
 END_IF;

 2 :
 IF MC_Move1_inst.Done THEN
 MC_Move1_inst.Execute := 0 ;
 MC_Move2_inst.Execute := 1 ;
 ELSE
 IF MC_Move2_inst.Done THEN
 MC_Move1_inst.Execute := 1 ;
 MC_Move2_inst.Execute := 0 ;
 END_IF;
 END_IF;
END_CASE ;

(* it manages the homing procedure *)
MC_Home_inst(Axis := Axis,
 Position:=0,
 HomingMode:= 5,
 VelocitySearchSwitch:=VelFindMicro,
 VelocitySearchZero:=VelOutMicro);

(* it executes a continuously
 Move1Pos -> Move2Pos -> Move1Pos
 movement*)
MC_Move1_inst(Axis:=Axis,
 Position:=Move1Pos,
 Velocity:=Move1Vel,
 Acceleration:= Move1Acc,
 Deceleration:=Move1Acc);
MC_Move2_inst(Axis:=Axis,
 Position:=Move2Pos,
 Velocity:=Move2Vel,
 Acceleration:= Move2Acc,
 Deceleration:=Move2Acc);
END_PROGRAM

(* exception management *)
PROGRAM exception
 VAR

148 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

 MC_EmergencyStop_inst : MC_EmergencyStop ;
 END_VAR
 (* it stops the movement because the program has had an error,
 therefore it is stopped *)
 MC_EmergencyStop_inst(Axis:= Axis,
 Execute:=0) ;
 MC_EmergencyStop_inst(Axis:= Axis,
 Execute:=1,
 Deceleration:= EmgDeceleration) ;
 err:=1 ;
END_PROGRAM

4.5.2. Capture example
In this section a simple management for the capture of the axis position on the zero mark is
shown. To configure the capture function it is necessary to define two characteristics:

• the event that causes the capture. The available events are: zero mark (Io_EncTrig-
gerEvent); the home digital input(Io_DInpTriggerEvent);

• the position that the function has to capture when the event happens: the function block
Io_EncEventCaptureValue is necessary to configure it.

In the following example the capture of the axis position on the zero mark is configured and
managed. The sequence to manage the capture function is:

1. to prepare the inputs EdgeType, OneShot in the function block Io_EncTriggerEvent;

2. when the function block Io_EncTriggerEvent detects a positive edge on the input Ex-
ecute, it starts to configure the capture function into the drive and it also calculates
the TrgEventHandle. When it finishes its internal operations, it sets to TRUE the
output EnablingCapture. This output is used from the function block Io_EncEvent-
CaptureValue to complete the configuration of the capture function.

3. When this second function block finishes its operations, then it has to set to TRUE
the input TrgStart of the rst one. In this moment the capture function starts. The
output Active is set to TRUE;

4. When TrgStart of Io_EncTriggerEvent has a rising edge, the capture function starts.
When the event happens and the position is latched, then the output Done of
Io_EncEventCaptureValue is set to TRUE and the captured value is reported in its out-
put CapturedValue.

VAR_GLOBAL(* STRUCT *)
 EventRef : ENC_REF ;
 CptRef : ENC_REF ;

Doc. MS270928 - Ed. 13 - 28 Oct 2020 149

IEC programming for nodes www.cmz.it

 (* instances of the function blocks *)
 EncTriggerEvent : Io_EncTriggerEvent;
 EncEventCaptureValue : Io_EncEventCaptureValue;

END_VAR

PROGRAM main

 Axis.Num := MC_REF_AXIS_MAIN ;
 EventRef.Num := IO_REF_ENC_AX_FEEDBACK ; (* event on feedback
 encoder *)
 CptRef.Num := IO_REF_ENC_AXIS ; (* latch the axis position
 *)

 (* axis management, see previous example *)

 CASE iStep OF
 0 :
 EncTriggerEvent.Execute := 0 ;
 EncEventCaptureValue.Execute := 0;
 IF StartCpt THEN
 EncTriggerEvent.EdgeType := 0 ;
 EncTriggerEvent.OneShot := 1 ;
 EncTriggerEvent.TrgStart := 0;
 EncTriggerEvent.Execute := 1 ;
 iStep := iStep + 1 ;
 END_IF;
 1 :
 EncTriggerEvent.TrgStart := EncEventCaptureValue.CaptureEnabled ;
 IF EncEventCaptureValue.Done THEN
 CptPos := EncEventCaptureValue.CapturedValue ;
 iStep := 0 ;
 StartCpt := 0 ;
 END_IF;

END_CASE ;

EncTriggerEvent(Reference:=EventRef);
EncEventCaptureValue(Reference:=CptRef,
 Execute := EncTriggerEvent.EnablingCapture,

150 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

 TrgEventHandle :=
 EncTriggerEvent.TrgEventHandle);
END_PROGRAM

4.5.3. Example of the management of a program safety
condition request
This example describes how the IEC program can manage a request to go in its safety condition
(Section 3.1.1, “BD series: Program safety condition procedure”). The safety condition for an ap-
plication is a well defined situation. When the application is in this situation the program can
stop while the machine is in a safe condition and no problem will happen.

In order to guarantee to the program to arrive in this well defined situation before the program
is stopped, it is important to follow this sequence:

1. First of all, in the IEC program the semaphore IECSafeCondition has to switch to
"yellow" (see SYS_WrIECSafeCondition(0,1)). In this way, when the system manager
has to execute an action that needs that the program is in safety condition, it has to
wait that the program executes the programmed procedure to arrive in the well defined
situation;

2. Then it has to check if a request of a safety condition is arrived from the system manager
(SYS_RqsIECSafeCondition);

3. when it happens: it manages the request, so it executes a sequence of actions to put the
program in a well defined situation, that is the safety condition of the application. The
procedure reported in the example is to wait until a counter decreases its value from
50000 to 0;

4. at the end, it switches the semaphore to green (SYS_WrIECSafeCondition(0,0), after
that the program stops and the application safety condition is valid. The system man-
ager can now continue to test the other safety conditions until all are valid.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 151

IEC programming for nodes www.cmz.it

Note
SYS_WrIECSafeCondition (0,1) can be thought as a traf-
fic light. When it is 0 then it means it is green, when it is 1 is equal to yellow and 2 equals to red.
In an application the status of the SYS_WrIECSafeCondition can change al-
so if there is not a request to switch to the safety condition. In this way if an application is work-
ing and it is already in its safety condition, then it can set SYS_WrIECSafeCondition to 0.
Or it can set SYS_WrIECSafeCondition to 2, in this way the application in-
forms that it can not modify its execution to put the application in the safety condition.
When SYS_WrIECSafeCondition is 1 means that the application is not in safety condi-
tion in this moment, but if a request arrives (e.g. in case a IEC program download, para-
meter le or rmware update, ...) then the application (IEC program) will execute a pro-
cedure (that must be written by the program developer) in order to put even the ma-
chine in its safety condition before to let the IEC safety procedure to start.

VAR_GLOBAL
 a : DINT := 10;
 d : DINT := 0;
 SemIEC : INT;
 err : DINT;
 event : DINT;
 newrqst : BOOL;
 safeGo : BOOL;
 delay : DINT;
 Exception : INT := 0;
END_VAR

PROGRAM resetp
 a := 0;
 delay := 50000;

 (*
 * it writes the semaphore IECSafeCondition to "yellow" = 1 for all
 events
 * 0: all events
 * 1: semaphore = yellow
 *)
 err := SYS_WrIECSafeCondition(0, 1);
END_PROGRAM

PROGRAM run
 delay := 50000;
 safeGo := FALSE;
 (*

152 Doc. MS270928 - Ed. 13 - 28 Oct 2020

IEC reference guide

 * it writes the semaphore IECSafeCondition to "yellow" = 1 for all
 events
 * 0: all events
 * 1: semaphore = yellow
 *)
 err := SYS_WrIECSafeCondition(0, 1);
END_PROGRAM

PROGRAM exception
 (* after that only a forced download is allowed *)
 exception := exception + 1;
END_PROGRAM

PROGRAM main
 a := a + 1;

 (*
 * it checks if an event is requesting to program to go in safety
 condition
 *)
 newrqst := SYS_RqsIECSafeCondition(event);
 IF newrqst THEN
 safeGo := TRUE;
 END_IF;

 (*
 * it manages the safety condition procedure in the program
 *)
 IF safeGo THEN
 delay := delay - 1;
 IF delay <= 0 THEN
 (* when the time is elapsed the semaphore is set to green
 because
 * the program is arrived in the safety condition.
 * Then the execution of the program will go in Stopped mode
 *)
 err := SYS_WrIECSafeCondition(0, 0);
 END_IF;
 END_IF;

 (*
 * it reads the semaphore IECSafeCondition
 *)
 SemIEC := SYS_RdIECSafeCondition(0);

Doc. MS270928 - Ed. 13 - 28 Oct 2020 153

IEC programming for nodes www.cmz.it

END_PROGRAM

154 Doc. MS270928 - Ed. 13 - 28 Oct 2020

Appendix A

Error codes list

These are the ErrorID codes:

error codes description
0x07000201 axis number too big

0x07000202 parameter code does not exist

0x07000203 parameter type mistake

0x07000204 operation not allowed. If the function block is MC_Power this error can mean that the En-
able hw in/out is configured but its state is FALSE

0x07000205 the previous operation is not finished

0x07000206 input is not valid

0x07000207 internal error

0x07000208 the axis is not STANDSTILL

0x07000209 homing is not finished

0x0700020A drive is not ready to switch On

0x0700020B axis is not compiled

0x0700020C axes program is not running

0x0700020D there is not enough memory

0x0700020E the axis is free, but the command needs the axis in torque

0x0700020F the axis is executing an emergency ramp, therefore the movement command is denied

0x07000210 the parameter is not local, so it cannot be read with a function, it has to be used the function
block

0x07000211 the command is not executed because the axis is in INITIALITAZION state

0x07000212 internal error of MC_MoveCustom

0x07000213 internal calculation error

Table A.1. ErrorID codes

When the program has an exception, the object 8709 returns one of these codes:

error codes description
0x80000001 Division by 0

Doc. MS270928 - Ed. 13 - 28 Oct 2020 155

IEC programming for nodes www.cmz.it

error codes description
0x80000002 power 0^0

0x80000003 sqrt of a number < 0

0x80000004 array out of range

0x000000F0 the SDSetup is too old (assembler old)

0x000000F8 a PROGRAM INT n is called, but it is not declared

0x000000F9 program CRC error

0x000000FA the SDSetup is too old (compiler old)

0x000000FB the rmware is too old

0x000000FC the rmware does not support this program

0x000000FD the project is too old (header old)

0x000000FE the project is corrupt (header error)

other it means there is an internal error, to contact CMZ

Table A.2. Error states

When a function block of the I/O peripheral has an exception, the object 8709 returns one of
these codes:

error codes description
0x05000002 Peripheral index not valid

0x05000003 Trigger event not allowed

0x05000004 Capture event not allowed

0x05010100 Logical input reference not valid

0x05010101 Trigger event handle not valid

0x05010102 Error on event activation

0x05050101 Trigger event handle not valid

0x05050112 Encoder event activation error

Table A.3. IO's function blocks error codes

156 Doc. MS270928 - Ed. 13 - 28 Oct 2020

Appendix B

Parameters table

The parameters table is the same of the MODBUS protocol, therefore the address of the desired
parameter has to be searched in the table reported in the manual of the drive.

Doc. MS270928 - Ed. 13 - 28 Oct 2020 157

IEC programming for nodes

158 Doc. MS270928 - Ed. 13 - 28 Oct 2020

Appendix C

How can I assess the memory
usage?

One of the results of the compiling is the list of memory usage:

Figure C.1. compiling result

In the section Statistics there is the report of the memory usage. The numbers written into the
parenthesis (nnnn) are the limit values of each type of memory resource (see Section 3.2.2, “Mem-
ory resources of the drive”).

Doc. MS270928 - Ed. 13 - 28 Oct 2020 159

IEC programming for nodes

160 Doc. MS270928 - Ed. 13 - 28 Oct 2020

Appendix D

Objects of the programming

There are some objects dedicated to the programming.

Note
In some cells of the tables there is a simplifying formula, used to summarize the ad-
dressing rule for the %MD and %MW memory area. The "n" letter in the formu-
la means the number of the byte of the %MD or %MW area (e.g. the %MD12 refers to the Dou-
ble Word that starts on the byte 12 of the %MD memory area).

CANopen PROFINET Modbus Acc. Type Description Pdo Map
0x461A.01 43025.0 8720 UDINT32 RW Period of UserTimer INT (11) NO

0x4617.00 17943 8000 UINT32 RO Real execution time of the main() pro-
gram

NO

0x4520.00 17696 8774 UINT16 RW Timer Free Running (increasing every
ms)

NO

0x4616.00 17942 8773 UINT16 RO Plc period NO

0x4618.01 43009 8708 UINT16 RO State of the virtual machine NO

0x4618.02 43010 8709 UINT32 RO Error of the virtual machine (see Table
A.2)

NO

0x4618.03 43011 8711 UINT32 RO Program counter of the virtual ma-
chine

NO

0x4618.04 43012 8713 UINT16 RO Operative code executing NO

0x4618.05 43013 8714 UINT16 RW Threshold for the IEC event of low
voltage (it is expressed in V*10)

NO

Addresses to read or write in %MD area
Maximum %MD is %MD252 for SD series, %MD508 for BD series

0x4700.00 - - UINT8 RO Num of %MD, 64 sub indexesa, 128
sub indexesb

NO

0x4700.01 18176.0 8800 UINT32 RW Exchange area %MD0 YES

0x4700.02 18176.1 8802 UINT32 RW Exchange area %MD4 YES

0x4700.03 18176.2 8804 UINT32 RW Exchange area %MD8 YES

Doc. MS270928 - Ed. 13 - 28 Oct 2020 161

IEC programming for nodes www.cmz.it

CANopen PROFINET Modbus Acc. Type Description Pdo Map
0x4700.04 18176.3 8806 UINT32 RW Exchange area %MD12 YES

...

0x4700.
(n/4+1) 18176.(n/4) 8800 + (n/2) UINT32 RW Exchange area %MDn YES

...

0x4700.40 18176.63 8926 UINT32 RW Exchange area %MD252a YES

...

0x4700.80 18176.127 9054 UINT32 RW Exchange area %MD508b YES

Addresses to read or write in %MW area
Maximum %MW is %MW254a, %MW510b

0x4720.00 - - UINT8 RO Num of %MW, 128 sub indexes NO

0x4720.01 18208.0 8800 UINT16 RW Exchange area %MW0 YES

0x4720.02 18208.1 8801 UINT16 RW Exchange area %MW2 YES

0x4720.03 18208.2 8802 UINT16 RW Exchange area %MW4 YES

0x4720.04 18208.3 8803 UINT16 RW Exchange area %MW6 YES

...

0x4720.
(n/2+1) 18208.(n/2) 8800 + (n/2) UINT16 RW Exchange area %MWn YES

...

0x4720.80 18208.127 8927 UINT16 RW Exchange area %MW254

0x4721.00 - - UINT8 RO Num of %MW, 128 sub indexesb NO

0x4721.01 18209.0 8928 UINT16 RW Exchange area %MW256b YES

0x4721.02 18209.1 8929 UINT16 RW Exchange area %MW258b YES

0x4721.03 18209.2 8930 UINT16 RW Exchange area %MW260b YES

0x4721.04 18209.3 8932 UINT16 RW Exchange area %MW262b YES

...

0x4721.
((n-0x100)/2+1)

18209.
((n-256)/2)

8928 +
((n-256)/2)

UINT16 RW Exchange area %MWnb YES

... YES

0x4721.80 18209.127 9055 UINT16 RW Exchange area %MW510b YES
afor SD drives: only drives with rmware version less than 38. For BD drives it is always true.
bfor SD drives: only drives with rmware version greater and equal than 38. For BD drives it is always true.

Table D.1. Programming objects

162 Doc. MS270928 - Ed. 13 - 28 Oct 2020

RESEARCH LABORATORY SINCE 1992

FACTORY AND
HEADQUARTERS

CMZ SISTEMI ELETTRONICI S.r.l.
Via dell'Artigianato, 21
31050 Vascon (TV) - Italy
Phone 39 (0)422 447411
Fax +39 (0)422 447444

e-mail: sales@cmz.it
web site: www.cmz.it

	IEC programming for nodes
	Table of Contents
	Chapter 1. Purpose of the user guide
	Chapter 2. What's new
	Chapter 3. User Guide
	3.1. Main characteristics
	3.1.1. BD series: Program safety condition procedure
	3.1.2. BD series: Request to go in the Stopped state
	3.1.3. Running Stopped state notes

	3.2. Declaration of the variables
	3.2.1. How the variables are stored into the memory
	3.2.2. Memory resources of the drive
	3.2.2.1. ISD, SVM with firmware lower than 38
	3.2.2.2. ISD, SVM with firmware greater or equal to 38
	3.2.2.3. IBD

	3.2.3. GLOBAL variables
	3.2.3.1. Exchange area: %M, %I, %Q variables

	3.2.4. RETAIN variables
	3.2.5. CONSTANT objects
	3.2.6. LOCAL variables

	3.3. Instructions
	3.4. What is a function block?

	Chapter 4. IEC reference guide
	4.1. System functions and function block(SYS_)
	SYS_EnEventInt
	SYS_DisEventInt
	SYS_ReadTime
	SYS_WriteObject
	SYS_ReadObject
	SYS_Restart
	SYS_Continue
	SYS_MemoryToEeprom
	SYS_RdIECSafeCondition
	SYS_RqsIECSafeCondition
	SYS_WrIECSafeCondition

	4.2. Axes management (MC_)
	4.2.1. Axis status
	4.2.2. Drive status
	4.2.2.1. How digital inputs and outputs manage the drive

	4.2.3. Axis functionalities
	4.2.3.1. SW limits management
	4.2.3.2. HW limits management
	4.2.3.3. Emergency ramp

	4.2.4. Data Type : AXIS_REF
	AXIS_REF

	4.2.5. Function blocks list
	4.2.5.1. Motion funtion blocks
	MC_EmergencyStop
	MC_Gear
	MC_Home
	MC_MoveAbsolute
	MC_MoveVelocity
	MC_Stop

	4.2.5.2. Administrative funtion blocks
	MC_Power
	MC_ReadActualPosition
	MC_ReadCommandPosition
	MC_ReadDriveStatus
	MC_ReadStatus
	MC_Reset
	MC_Start

	4.3. Peripherals management (IO_)
	4.3.1. Encoder management
	ENC_REF
	CMP_REF
	IO_EncGetStatus
	Io_EncManager
	Io_EncReadPosition
	Io_EncReadPositionOnPort
	Io_EncTriggerEvent
	Io_EncEventCaptureValue
	Io_EncComparator

	4.3.2. Digital inputs management
	DINP_REF
	Io_DInpGetStatus
	Io_DInpManager
	Io_DInpReadStatus
	Io_DInpReadStatusOnPort
	Io_DInpTriggerEvent

	4.3.3. Digital outputs management
	DOUT_REF
	Io_DOutGetStatus
	Io_DOutManager
	Io_DOutWriteStatus
	Io_DOutWriteStatusOnPort

	4.3.4. Analog input management
	AINP_REF
	Io_AInpGetStatus
	Io_AInpManager
	Io_AInpReadValue
	Io_AInpReadValueOnPort

	4.4. Utility library (Ut_)
	4.4.1. Functions and function blocks list
	Ut_ArcCos
	Ut_Cos
	Ut_ArcSin
	Ut_Sin
	Ut_MTracky
	Ut_SolarPosition
	Ut_TrueSolarTime

	4.5. Examples
	4.5.1. Axis management
	4.5.2. Capture example
	4.5.3. Example of the management of a program safety condition request

	Appendix A. Error codes list
	Appendix B. Parameters table
	Appendix C. How can I assess the memory usage?
	Appendix D. Objects of the programming

