Operating instructions Compax3 I20T11 \& I32T11

Positioning via Profibus (I20) or Profinet (I32)

Windows NT®, Windows $2000^{\text {TM }}$, Windows XP ${ }^{\text {TM }}$, Windows Vista, Windows 7 are trademarks of Microsoft Corporation.

Nonwarranty clause

We checked the contents of this publication for compliance with the associated hard and software. We can, however, not exclude discrepancies and do therefore not accept any liability for the exact compliance. The information in this publication is regularly checked, necessary corrections will be part of the subsequent publications.

Production site:

Italy: Parker Hannifin Manufacturing Srl • SSD SBC • Electromechanical Automation • Via Gounod, 1
I-20092 Cinisello Balsamo (MI), Italy
Tel.: +39 (0)2 361081 • Fax: +39 (0)2 36108400
E-mail: sales.automation@parker.com mailto:sales.sbc@parker.com• Internet: www.parker.com/eme http://www.parker.com/eme

USA: Parker Hannifin Corporation • Electromechanical Automation 5500 Business Park Drive • Rohnert Park, CA 94928 Phone \#: (800) 358-9068 • FAX \#: (707) 584-3715
E-mail: CMR_help@parker.com mailto:emn_support@parker.com•Internet: www.compumotor.com http://www.compumotor.com

NOTICE
 Status of the Manuals:

Help and PDFs are updated simultaneously. In case of doubt the HTML help shows the actual state in comparison to PDF edition.
For additional HTLM help please refer to our website.
Positioning via Profibus \& Profinet
C3I20132T11
http://www.Parker.com/Literature/Electromechanical Europe/user guides/C3I20132T11.chm

Inhalt

1. Introduction 10
1.1 Device assignment 10
1.2 ProfiNet Certificate 11
1.3 Scope of delivery 12
1.4 Type specification plate 13
1.5 Packaging, transport, storage 14
1.6 Safety instructions 15
1.6.1. General hazards 15
1.6.2. Safety-conscious working 15
1.6.3. Special safety instructions 16
1.7 Warranty conditions 17
1.8 Conditions of utilization 18
1.8.1. Conditions of utilization for CE-conform operation 18
1.8.1.1 Conditions of utilization mains filter 18
1.8.1.2 Conditions of utilization for cables / motor filter 19
1.8.1.3 Additional conditions of utilization 20
1.8.2. Conditions of utilization for UL certification Compax3S 21
1.8.3. Conditions of utilization for UL approval Compax3M 22
1.8.4. Conditions of utilization for UL approval PSUP 23
1.8.5. Conditions of utilization for UL certification Compax3H 24
1.8.6. Current on the mains PE (leakage current) 25
1.8.7. Supply networks 25
2. Compax3 T11: Positioning via Profibus (I20) or Profinet (I32) 26
3. Compax3 device description 28
3.1 Meaning of the status LEDs - Compax3 axis controller 28
3.2 Meaning of the status LEDs - PSUP (mains module) 29
3.3 Connections of Compax3S 30
3.3.1. Compax3S connectors 30
3.3.2. Connector and pin assignment C3S 31
3.3.3. Control voltage 24VDC / enable connector X4 C3S 33
3.3.4. Motor / Motor brake C3S connector X3 34
3.3.5. Compax3Sxxx V2 35
3.3.5.1 Main voltage supply C3S connector X1 35
3.3.5.2 Braking resistor / high voltage DC C3S connector X2 36
3.3.6. Compax3Sxxx V4 37
3.3.6.1 Power supply connector X1 for 3AC 400VAC/480VAC-C3S devices 37
3.3.6.2 Braking resistor / high voltage supply connector X2 for 3AC 400VAC/480VAC_C3S devices 38
3.3.6.3 Connection of the power voltage of 2 C3S 3AC devices 38
3.4 Installation instructions Compax3M 39
3.5 PSUP/Compax3M Connections 41
3.5.1. Front connector 41
3.5.2. Connections on the device bottom 42
3.5.3. Connections of the axis combination 43
3.5.4. Control voltage 24VDC PSUP (mains module) 44
3.5.5. Mains supply PSUP (mains module) X41 45
3.5.6. Braking resistor / temperature switch PSUP (mains module) 47
3.5.6.1 Temperature switch PSUP (mains module) 48
3.5.7. Motor / motor brake Compax3M (axis controller) 49
3.5.7.1 Measurement of the motor temperature of Compax3M (axis controller) 50
3.5.8. X14 Safety technology option S1 for Compax3M (axis controller) 50
3.5.9. Safety technology option S 3 for Compax3M (axis controller) 50
3.6 Connections of Compax3H 51
3.6.1. Compax3H plugs/connections 51
3.6.2. Connection of the power voltage 52
3.6.3. Compax3H connections front plate 53
3.6.4. Plug and pin assignment C 3 H 54
3.6.5. Motor / Motor brake C3H 56
3.6.6. Control voltage 24 VDC C3H 57
3.6.7. Mains connection Compax3H 57
3.6.8. Braking resistor / supply voltage $\mathbf{C} 3 \mathrm{H}$ 58
3.6.8.1 Connect braking resistor C 3 H 58
3.6.8.2 Power supply voltage DC C3H 58
3.6.8.3 Connection of the power voltage of 2 C 3 H 3 AC devices 58
3.7 Communication interfaces 59
3.7.1. RS232 / RS485 interface (plug X10) 59
3.7.2. Communication Compax3M 60
3.7.2.1 PC - PSUP (Mains module) 60
3.7.2.2 Communication in the axis combination (connector X30, X31) 60
3.7.2.3 Adjusting the basic address 61
3.7.2.4 Setting the axis function 61
3.7.3. Profibus connector X23 on Interface $\mathbf{I 2 0}$ 62
3.7.3.1 Adjusting the bus address (Profibus I20) 62
3.7.3.2 Function of the Bus LEDs (Profibus I20) 62
3.7.4. Profinet connector X23, X24 on Interface $\mathbf{I 3 2}$ 62
3.7.4.1 Adjusting the bus address (Profinet I32) 63
3.7.4.2 Function of the Bus LEDs (Profinet I32) 63
3.8 Signal interfaces 64
3.8.1. Resolver / Feedback (connector X13) 64
3.8.2. Analogue / encoder (plug X11) 66
3.8.2.1 Wiring of analog interfaces 66
3.8.2.2 Connections of the encoder interface 66
3.8.3. Digital inputs/outputs (plug X12) 67
3.8.3.1 Connection of the digital Outputs/Inputs 68
3.8.3.2 Logic proximity switch types 68
3.9 Mounting and dimensions 69
3.9.1. Mounting and dimensions Compax3S 69
3.9.1.1 Mounting and dimensions Compax3S0xxV2 69
3.9.1.2 Mounting and dimensions Compax3S100V2 and S0xxV4 70
3.9.1.3 Mounting and dimensions Compax3S150V2 and S150V4 71
3.9.1.4 Mounting and dimensions Compax3S300V4 72
3.9.2. Mounting and dimensions PSUP/C3M 73
3.9.2.1 Mounting and dimensions PSUP10/C3M050D6, C3M100D6, C3M150D6 73
3.9.2.2 Mounting and dimensions PSUP20/PSUP30/C3M300D6 74
3.9.2.3 With upper mounting, the housing design may be different 74
3.9.3. Mounting and dimensions C 3 H 75
3.9.3.1 Mounting distances, air currents Compax3H050V4 76
3.9.3.2 Mounting distances, air currents Compax3H090V4 76
3.9.3.3 Mounting distances, air currents Compax3H1xxV4 77
3.10 Safety function - STO (=safe torque off) 78
3.10.1. General Description 78
3.10.1.1 Important terms and explanations 78
3.10.1.2 Intended use 79
3.10.1.3 Advantages of using the "safe torque off" safety function. 79
3.10.1.4 Devices with the STO (=safe torque off) safety function 80
3.10.2. STO (= safe torque off) with Compax3S 81
3.10.2.1 STO Principle (= Safe Torque Off) with Compax3S 81
3.10.2.2 Conditions of utilization STO (=safe torque off) Safety function 83
3.10.2.3 Notes on the STO function 83
3.10.2.4 STO application example (= safe torque off) 84
3.10.2.5 Technical Characteristics STO Compax3S 90
3.10.3. STO (= safe torque off) with Compax3m (Option S1) 91
3.10.3.1 Safety switching circuits 91
3.10.3.2 Safety notes for the STO function in the Compax3M 92
3.10.3.3 Conditions of utilization for the STO function with Compax3M 92
3.10.3.4 STO delay times 93
3.10.3.5 Compax3M STO application description 94
3.10.3.6 STO function test 97
3.10.3.7 Technical details of the Compax3M S1 option 99
4. Setting up Compax3 100
4.1 Configuration 100
4.1.1. Selection of the supply voltage used 101
4.1.2. Motor selection 102
4.1.3. Optimize motor reference point and switching frequency of the motor current 102
4.1.4. Ballast resistor 105
4.1.5. General drive 105
4.1.6. Defining the reference system 106
4.1.6.1 Measure reference 106
4.1.6.2 Machine Zero 109
4.1.6.3 Travel Limit Settings 126
4.1.6.4 Change assignment direction reversal / limit switches 129
4.1.6.5 Change initiator logic 129
4.1.7. Defining jerk / ramps 130
4.1.7.1 Speed for positioning and velocity control 130
4.1.7.2 Acceleration for positioning and velocity control 130
4.1.7.3 Acceleration / deceleration for positioning 130
4.1.7.4 Jerk limit for positioning 130
4.1.7.5 Ramp upon error and de-energize 131
4.1.7.6 Jerk for STOP, MANUAL and error 132
4.1.8. Limit and monitoring settings 132
4.1.8.1 Current (Torque) Limit. 132
4.1.8.2 Positioning window - Position reached 133
4.1.8.3 Following error limit 134
4.1.8.4 Maximum operating speed 134
4.1.9. Encoder simulation 135
4.1.9.1 Encoder bypass with Feedback module F12 (for direct drives). 135
4.1.10. I/O Assignment 136
4.1.11. Position mode in reset operation 137
4.1.12. Reg-related positioning / defining ignore zone 139
4.1.13. Write into set table 140
4.1.13.1 Programmable status bits (PSBs) 140
4.1.14. Motion functions 142
4.1.14.1 MoveAbs and MoveRel 142
4.1.14.2 Reg-related positioning (RegSearch, RegMove) 143
4.1.14.3 Electronic gearbox (Gearing) 147
4.1.14.4 Speed specification (Velocity) 149
4.1.14.5 Stop command (Stop) 149
4.1.15. Error response 149
4.1.16. Configuration name / comments 149
4.1.17. Dynamic positioning 150
4.2 Configuring the signal Source 151
4.2.1. Signal source of the load feedback system 151
4.2.2. Select signal source for Gearing 151
4.2.2.1 Signal source HEDA 152
4.2.2.2 Encoder A/B 5V, step/direction or SSI feedback as signal source 153
4.2.2.3 +/-10V analog speed setpoint value as signal source 154
4.3 Load control 156
4.3.1. Configuration of load control 157
4.3.2. Error: Position difference between load mounted and motor feedback too high 158
4.3.3. Load control signal image 158
4.4 Optimization 159
4.4.1. Optimization window 159
4.4.2. Scope 160
4.4.2.1 Monitor information 160
4.4.2.2 User interface. 161
4.4.2.3 Example: Setting the Oscilloscope 165
4.4.3. Controller optimization 167
4.4.3.1 Introduction 168
4.4.3.2 Configuration 170
4.4.3.3 Automatic controller design. 186
4.4.3.4 Setup and optimization of the control 198
4.4.4. \quad Signal filtering with external command value 227
4.4.4.1 Signal filtering for external setpoint specification and electronic gearbox 228
4.4.5. Input simulation 229
4.4.5.1 Calling up the input simulation 229
4.4.5.2 Operating Principle 229
4.4.6. Setup mode 230
4.4.6.1 Motion objects in Compax3. 231
4.4.7. Load identification 232
4.4.7.1 Principle 232
4.4.7.2 Boundary conditions 232
4.4.7.3 Process of the automatic determination of the load characteristic value (load identification) 233
4.4.7.4 Tips 234
4.4.8. Alignment of the analog inputs 234
4.4.8.1 Offset alignment 234
4.4.8.2 Gain alignment 235
4.4.8.3 Signal processing of the analog inputs 235
4.4.9. C3 ServoSignalAnalyzer 236
4.4.9.1 ServoSignalAnalyzer - function range 236
4.4.9.2 Signal analysis overview 237
4.4.9.3 Installation and activation of the ServoSignalAnalyzer 238
4.4.9.4 Analyses in the time range 239
4.4.9.5 Measurement of frequency spectra 242
4.4.9.6 Measurement of frequency responses 245
4.4.9.7 Overview of the user interface 251
4.4.9.8 Basics of frequency response measurement 264
4.4.10. ProfileViewer for the optimization of the motion profile 269
4.4.10.1 Mode 1: Time and maximum values are deduced from Compax3 input values 269
4.4.10.2 Mode 2: Compax3 input values are deduced from times and maximum values 270
4.4.11. Turning the motor holding brake on and off 271
5. Communication 272
5.1 Compax3 communication variants 272
5.1.1. \quad PC <-> Compax3 (RS232) 273
5.1.2. $\quad P C<>C o m p a x 3 ~(R S 485) ~$ 274
5.1.3. $P C<>C 3 M$ device combination (USB) 275
5.1.4. USB-RS485 Moxa Uport 1130 adapter 276
5.1.5. ETHERNET-RS485 NetCOM 113 adapter 277
5.1.6. Modem MB-Connectline MDH 500 / MDH 504 278
5.1.7. C3 settings for RS485 two wire operation 279
5.1.8. C3 settings for RS485 four wire operation 280
5.2 COM port protocol 281
5.2.1. RS485 settings values 281
5.2.2. ASCII - record 281
5.2.3. Binary record 282
5.3 Remote diagnosis via Modem 286
5.3.1. Structure 286
5.3.2. Configuration of local modem 1 287
5.3.3. Configuration of remote modem 2 288
5.3.4. Recommendations for preparing the modem operation 288
5.4 Profibus \& Profinet 289
5.4.1. Profibus / Profinet configuration 289
5.4.1.1 Operating modes 289
5.4.1.2 Configuration of the process-data channel 290
5.4.1.3 Operating mode: Speed control 291
5.4.1.4 Operating mode: Direct positioning 293
5.4.1.5 Operating mode: Positioning with set selection 295
5.4.1.6 PKW parameter channel 296
5.4.1.7 Error Reaction on Bus Failure 296
5.4.2. Status machine 296
5.4.2.1 Status machine PROFIDrive 297
5.4.2.2 Status machine PROFIDrive speed control 298
5.4.2.3 Status machine Position PROFIDrive 299
5.4.3. Cyclic process data channel 299
5.4.3.1 Control word 1 overview 300
5.4.3.2 Status word 1 overview 300
5.4.3.3 Speed control operating mode 301
5.4.3.4 Operating mode direct positioning 303
5.4.3.5 Operating mode positioning with set selection 307
5.4.4. Acyclic parameter channel 312
5.4.4.1 Parameter access with DPVO: Required data channel 312
5.4.5. TCP/IP communication with Profinet 317
5.5 Compax3-Objects 318
5.5.1. Object overview sorted by PNU (I20132T11) 319
5.5.2. Object overview sorted by object name (I20132T11) 325
5.5.3. Data formats of the bus objects 331
5.5.3.1 Integer formats 331
5.5.3.2 Unsigned - Formats 331
5.5.3.3 Fixed point format E2_6 331
5.5.3.4 Fixed point format C4_3 332
5.5.3.5 Bus format Y2 and Y4 332
5.5.3.6 Bit sequence V2 333
5.5.3.7 Byte string OS 333
6. Status values 334
6.1 D/A-Monitor 334
7. Error 335
8. Order code 336
8.1 Order code device: Compax3 337
8.2 Order code for mains module: PSUP 338
8.3 Order code for accessories 338
8.3.1. Order code for feedback cables 339
8.3.2. Order Code braking resistors 339
8.3.3. Order code mains filter (C3S) 340
8.3.4. Order code capacitor module 340
8.3.5. Interface cable order code 341
8.3.6. Order Code input/output terminals (PIO) 341
8.3.7. Order note. 342
9. Compax3 Accessories 343
9.1 Parker servo motors 343
9.1.1. Direct drives 343
9.1.1.1 Transmitter systems for direct drives 344
9.1.1.2 Linear motors 345
9.1.1.3 Torque motors 345
9.1.2. Rotary servo motors. 345
9.2 EMC measures 346
9.2.1. Mains filter 346
9.2.1.1 Mains filter NFI01/01 347
9.2.1.2 Mains filter NFI01/02 347
9.2.1.3 Mains filter for NFIO1/03 348
9.2.1.4 Mains filter NFIO2/0x 348
9.2.1.5 Mains filter NFIO3/01\& NFIO3/03 349
9.2.1.6 Mains filter NFIO3/02 350
9.2.2. Motor output filter 351
9.2.2.1 Motor output filter MDR01/04 351
9.2.2.2 Motor output filter MDR01/01 351
9.2.2.3 Motor output filter MDR01/02 352
9.2.2.4 Wiring of the motor output filter 352
9.2.3. Mains chokes 353
9.2.3.1 Mains filter for PSUP30 353
9.3 Connections to the motor 354
9.3.1. Resolver cable 355
9.3.2. SinCos© cable 356
9.3.3. EnDat cable 356
9.3.4. Motor cable 357
9.3.4.1 Connection of terminal box MH145 \& MH205 357
9.3.5. Encoder cable 358
9.4 External braking resistors 359
9.4.1. Permissible braking pulse powers of the braking resistors 360
9.4.1.1 Calculation of the BRM cooling time 360
9.4.1.2 Permissible braking pulse power: BRM08/01 with C3S015V4 / C3S038V4 361
9.4.1.3 Permissible braking pulse power: BRM08/01 with C3S025V2 362
9.4.1.4 Permissible braking pulse power: BRM09/01 with C3S100V2 362
9.4.1.5 Permissible braking pulse power: BRM10/01 with C3S150V4 363
9.4.1.6 Permissible braking pulse power: BRM10/02 with C3S150V4 363
9.4.1.7 Permissible braking pulse power: BRM05/01 with C3S063V2 364
9.4.1.8 Permissible braking pulse power: BRM05/01 with C3S075V4 364
9.4.1.9 Permissible braking pulse power: BRM05/02 with C3S075V4 365
9.4.1.10 Permissible braking pulse power: BRM04/01 with C3S150V2 365
9.4.1.11 Permissible braking pulse power: BRM04/01 with C3S300V4 366
9.4.1.12 Permissible braking pulse power: BRM04/02 with C3S150V2 366
9.4.1.13 Permissible braking pulse power: BRM04/02 with C3S300V4 367
9.4.1.14 Permissible braking pulse power: BRM04/03 with C3S300V4 367
9.4.1.15 Permissible braking pulse power: BRM11/01 with $\mathrm{C} 3 \mathrm{H} 0 x x V 4$ 368
9.4.1.16 Permissible braking pulse power: BRM12/01 with $\mathrm{C} 3 \mathrm{H} 1 x x \mathrm{~V} 4$ 368
9.4.1.17 Permissible braking pulse power: BRM13/01 with PSUP10D6 369
9.4.1.18 Permissible braking pulse power: BRM14/01 with PSUP10D6 369
9.4.2. Dimensions of the braking resistors 369
9.4.2.1 BRM8/01braking resistors 369
9.4.2.2 BRM5/01 braking resistor 369
9.4.2.3 Braking resistor BRM5/02, BRM9/01 \& BRM10/01 370
9.4.2.4 Braking resistor BRM4/0x and BRM10/02 370
9.4.2.5 Braking resistor BRM11/01 \& BRM12/01 371
9.4.2.6 Ballast resistor BRM13/01 \& BRM14/01 371
9.5 Capacitor module C4 372
9.6 Operator control module BDM 373
9.7 EAM06: terminal block for inputs and outputs 373
9.8 Interface cable 376
9.8.1. RS232 - cable / SSK1 376
9.8.2. RS485 cable to Pop / SSK27 377
9.8.3. I/O-interface X12 / X22 / SSK22 378
9.8.4. Ref X11 / SSK21 378
9.8.5. Encoder coupling of 2 Compax3 axes / SSK29 379
9.8.6. Modem cable SSK31 380
9.8.7. Adapter cable SSK32/20 380
9.9 Options M1x 381
9.9.1. Digital input/output option M12 (I12) 381
9.9.1.1 Assignment of the X22 connector 381
9.9.1.2 Connections of digital inputs and outputs M10 \& M12 381
9.9.2. HEDA (motion bus) - Option M11 382
9.9.3. Option M10 = HEDA (M11) \& I/Os (M12) 383
9.10 Analog current inputs and voltage inputs (Option M21) 384
9.10.1. Connector assignment Option M21 X20 384
9.10.1.1 Wiring of the analog current inputs 384
9.10.2. Connector assignment Option M21 X21 385
9.10.2.1 Wiring of the analog voltage inputs 385
9.11 Profibus plug BUS08/01 386
10. Technical Data 387
11. Index 404

1. Introduction

In this chapter you can read about:

Device assignment 10
ProfiNet Certificate 11
Scope of delivery 12
Type specification plate 13
Packaging, transport, storage 14
Safety instructions 15
Warranty conditions 17
Conditions of utilization. 18

1.1 Device assignment

This manual is valid for the following devices:

- Compax3S025V2 + supplement
- Compax3S063V2 + supplement
- Compax3S100V2 + supplement
-Compax3S150V2 + supplement
- Compax3S015V4 + supplement
- Compax3S038V4 + supplement
- Compax3S075V4 + supplement
-Compax3S150V4 + supplement
- Compax3S300V4 + supplement
- Compax3H050V4 + supplement
- Compax3H090V4 + supplement
- Compax3H125V4 + supplement
- Compax3H155V4 + supplement
-Compax3M050D6 + supplement - Safety Option S1
- Compax3M100D6 + supplement - Safety Option S1
- Compax3M150D6 + supplement - Safety Option S1
- Compax3M300D6 + supplement - Safety Option S1
- PSUP10D6
- PSUP20D6
-PSUP30D6
With the supplement:
-F10 (Resolver)
-F11 (SinCos ${ }^{\oplus}$)
- F12 (linear and rotary direct drives)
- I20 / T11 (Profibus)
- I32 T11

1.2 ProfiNet Certificate

Certificate

PROFIBUS Nutzerorganisation e.V. grants to
Parker Hannifin (Electromechanical Automation) Robert-Bosch-Str. 22, 77656 Offenburg, Germany
the Certificate No: Z10601 for the PROFINET IO Device:

Model Name:	Compax3 "C3xxxxVxFxxI32TxxMxxxxx"
Revision:	1; SW/FW: V1.51.0; HW: 24.02
Identnumber:	Ox010F; 0xC332
GSD:	GSDML-V2.3-Parker-Compax3-20130429.xmI
DAP:	IDT_DAP_C3: Compax3, 0x00000200

This certificate confirms that the product has successfully passed the certification tests with the following PROFINET scope:
V Hardware
\square Conformance Class B
Auto_Negotiation, Auto_Polarity, Auto_Crossover
RT_CLASS_1, RTA, LLD, SNMP, MIB-II, LLDP-MIB

Test Report Number:
Authorized Test Laboratory:

PN223-1
SIEMENS AG, Fürth, Germany

The tests were executed in accordance with the following documents:
"Test Specifications for PROFINET IO devices, Version 2.2.4 from December 2010" and
"Test Cases for PN-Tester for PROFINET IO devices, Version 2.2.4.16.21".
This certificate is granted according to the document:
"Framework for testing and certification of PROFIBUS and PROFINET products".
For all products that are placed in circulation by May 06, 2016 the certificate is valid for life.

(Official in Charge)

Board of PROFIBUS Nutzerorganisation e. V.

(Karsten Schneider)

(K.-P. Lindner)

1.3 Scope of delivery

The following items are furnished with the device:

- Manuals*
- Installation manual (German, English, French)
- Compax3 DVD
- Startup Guide (German / English)
*Comprehensiveness of documentation depends on device type
- Device accessories

Device accessories for Compax3S

- Cable clamps in different sizes for large area shielding of the motor cable, the screw for the cable clamp as well as
\bullet the mating plug connectors for the Compax3S plug connectors $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$, and X4
- a toroidal core ferrite for one cable of the motor holding brake
- Lacing cord
-Device accessories for Compax3M
- Cable clamps in different sizes for large area shielding of the motor cable, the screw for the cable clamp as well as
- the matching plug for the Compax3M connectors X14, X15, X43
\bullet a toroidal core ferrite for a cable of the motor holding brake
- an interface cable (SSK28/23) for communication within the axis combination
- With safety option S3: Mating plugs X28 and connection cable X26 / X27
- Device accessories for PSUP
- Matching plug for the PSUP connectors X9, X40, X41
- 2 bus terminal connectors (BUS07/01) for mains module and the last axis controller in the combination
- Device accessories for Compax3H
- Mating connector for X3 and X4
-SSK32/20: RS232 adapter cable (programming port C3HxxxV4-SSK1-PC)
- VBK17/01: SubD jumper mounted

1.4 Type specification plate

The present device type is defined by the type specification plate (on the housing):

Compax3 - Type specification plate (example):

Explanation:

1	Type designation: The complete order designation of the device $(2,5,6,9,8)$.
2	C3: Abbreviation for Compax3 S025: Single axis device, nominal device current in $100 \mathrm{~mA}(025=2.5 \mathrm{~A})$ M050: Multi-axis device, nominal device current in $100 \mathrm{~mA}(050=5 \mathrm{~A})$ H050: High power device, nominal device current in 1A ($050=50 \mathrm{~A}$)
	D6: Designation nominal supply V2: Mains supply voltage (2=230VAC/240VAC, 4=400VAC/480VAC)
3	Unique number of the particular device
4	Nominal supply voltage Power Input: Input supply data Power Output: Output data
5	Designation of the feedback system F10: Resolver F11: SinCos@ / Single- or Multiturn F12: Feedback module for direct drives
6	Device interface 110: Analog, step/direction and encoder input I11 / I12: Digital Inputs / Outputs and RS232 / RS485 I20: Profibus DP / I21: CANopen / I22: DeviceNet / I30: Ethernet Powerlink / I31: EtherCAT / I32: Profinet C20: integrated controller C3 powerPLmC, Linux \& Web server
7	Date of factory test
8	Options Mxx: I/O extension, HEDA Sx: optional safety technology on C3M
9	Technology function T10: Servo controller T11: Positioning T20: Pressure / Volume flow rate T30: Motion control in accordance with IEC61131-3 T40: Electronic cam
10	CE compliance
11	Certified safety technology (corresponding to the logo displayed)
12	UL certified (corresponding to the logo displayed)

1.5 Packaging, transport, storage

Packaging material and transport

Caution!

The packaging material is inflammable, if it is disposed of improperly by burning, lethal fumes may develop. The packaging material must be kept and reused in the case of a return shipment. Improper or faulty packaging may lead to transport damages.
Make sure to transport the drive always in a safe manner and with the aid of suitable lifting equipment (Weight (see on page 387, see on page 398)). Do never use the electric connections for lifting. Before the transport, a clean, level surface should be prepared to place the device on. The electric connections may not be damaged when placing the device.

First device checkup

- Check the device for signs of transport damages.
- Please verify, if the indications on the Type identification plate (see on page 13) correspond to your requirements.
- Check if the consignment is complete.

Disposal

This product contains materials that fall under the special disposal regulation from 1996, which corresponds to the EC directory 91/689/EEC for dangerous disposal material. We recommend to dispose of the respective materials in accordance with the respectively valid environmental laws. The following table states the materials suitable for recycling and the materials which have to be disposed of separately.

Material	suitable for recycling	Disposal
Metal	yes	no
Plastic materials	yes	no
Circuit boards	no	yes

Please dispose of the circuit boards according to one of the following methods:

- Burning at high temperatures (at least $1200^{\circ} \mathrm{C}$) in an incineration plant licensed in accordance with part A or B of the environmental protection act.
- Disposal via a technical waste dump which is allowed to take on electrolytic aluminum condensers. Do under no circumstances dump the circuit boards at a place near a normal waste dump.

Storage

If you do not wish to mount and install the device immediately, make sure to store it in a dry and clean environment (see on page 400). Make sure that the device is not stored near strong heat sources and that no metal chippings can get into the device.

Please note in the event of storage >1

Forming the capacitors

year:
Forming the capacitors only required with 400VAC axis controllers and PSUP mains module

If the device was stored longer than one year, the intermediate capacitors must be re-formed!

Forming sequence:

- Remove all electric connections
- Supply the device with 230VAC single phase for 30 minutes
- via the L1 and L2 terminals on the device or
\bullet multi axis devices via L1 and L2 on the PSUP mains module

1.6 Safety instructions

In this chapter you can read about:

General hazards. 15
Safety-conscious working 15
Special safety instructions 16

1.6.1. General hazards

General Hazards on Non-Compliance with the Safety Instructions
The device described in this manual is designed in accordance with the latest technology and is safe in operation. Nevertheless, the device can entail certain hazards if used improperly or for purposes other than those explicitly intended.
Electronic, moving and rotating components can

- constitute a hazard for body and life of the user, and
- cause material damage

Designated use

The device is designed for operation in electric power drive systems (VDE0160). Motion sequences can be automated with this device. Several motion sequences can be can combined by interconnecting several of these devices. Mutual interlocking functions must be incorporated for this purpose.

1.6.2. Safety-conscious working

This device may be operated only by qualified personnel.
Qualified personnel in the sense of these operating instructions consists of:

- Persons who, by virtue to their training, experience and instruction, and their knowledge of pertinent norms, specifications, accident prevention regulations and operational relationships, have been authorized by the officer responsible for the safety of the system to perform the required task and in the process are capable of recognizing potential hazards and avoiding them (definition of technical personnel according to VDE105 or IEC364),
- Persons who have a knowledge of first-aid techniques and the local emergency rescue services.
- persons who have read and will observe the safety instructions.
- Those who have read and observe the manual or help (or the sections pertinent to the work to be carried out).
This applies to all work relating to setting up, commissioning, configuring, programming, modifying the conditions of utilization and operating modes, and to maintenance work.
This manual and the help information must be available close to the device during the performance of all tasks.

1.6.3. Special safety instructions

Caution!

Due to movable machine parts and high voltages, the device can pose a lethal danger. Danger of electric shock in the case of non-respect of the following instructions. The device corresponds to DIN EN 61800-3, i.e. it is subject to limited sale. The device can emit disturbances in certain local environments. In this case, the user is liable to take suitable measures.

- Check that all live terminals are secured against contact. Perilous voltage levels of up to 850 V occur.
- Do not bypass power direct current

Be cautious when performing configuration downloads with master - slave couplings (electronic gear, cam) Deactivate the drive before starting the configuration download: Master and Slave axis.

Caution!

Due to movable machine parts and high voltages, the device can pose a lethal danger. Danger of electric shock in the case of non-respect of the following instructions. The device corresponds to DIN EN 61800-3, i.e. it is subject to limited sale. The device can emit disturbances in certain local environments. In this case, the user is liable to take suitable measures.

- The device must be permanently grounded due to high earth leakage currents.
-The drive motor must be grounded with a suitable protective lead.
-The devices are equipped with high voltage DC condensers. Before removing the protective cover, the discharging time must be awaited. After switching off the supply voltage, it may take up to 10 minutes (with additional capacity modules it may take up to 30 minutes) to discharge the capacitors.
Danger of electric shock in case of non respect.
- Before you can work on the device, the supply voltage must be switched off at the L1, L2 and L3 clamps. Wait at least 10 minutes so that the power direct current may sink to a secure value (<50V). Check with the aid of a voltmeter, if the voltage at the DC+ and DC- clamps has fallen to a value below 50 V . Danger of electric shock in case of non respect.
- Do never perform resistance tests with elevated voltages (over 690V) on the wiring without separating the circuit to be tested from the drive.
- Please exchange devices only in currentless state and, in an axis system, only in a defined original state.
- If the axis controller is replaced, it is absolutely necessary to transfer the configuration determining the correct operation of the drive to the device, before the device is put into operation. Depending on the operation mode, a machine zero run will be necessary.
-The device contains electrostatically sensitive components. Please heed the electrostatic protection measures while working at/with the device as well as during installation and maintenance.
- Operation of the PSUP30 only with line choke.

Attention - hot surface!

The heat dissipater can reach very high temperatures $\left(>70^{\circ} \mathrm{C}\right)$

Protective seals

Caution!

The user is responsible for protective covers and/or additional safety measures in order to prevent damages to persons and electric accidents.

Please note in the

event of storage >1

Forming the capacitors

year:

Forming the capacitors only required with 400VAC axis controllers and PSUP mains module

If the device was stored longer than one year, the intermediate capacitors must be re-formed!

Forming sequence:

- Remove all electric connections
- Supply the device with 230VAC single phase for 30 minutes
- via the L1 and L2 terminals on the device or
- multi axis devices via L1 and L2 on the PSUP mains module

1.7 Warranty conditions

- The device must not be opened.
- Do not make any modifications to the device, except for those described in the manual.
- Make connections to the inputs, outputs and interfaces only in the manner described in the manual.
- Fix the devices according to the mounting instructions. (see on page 69, see on page 75)
We cannot provide any guarantee for other mounting methods.

Note on exchange of options

Device options must be exchanged in the factory to ensure hardware and software compatibility.
-When installing the device, make sure the heat dissipators of the device receive sufficient air and respect the recommended mounting distances of the devices with integrated ventilator fans in order to ensure free circulation of the cooling air.

- Make sure that the mounting plate is not exposed to external temperature influences.

1.8 Conditions of utilization

In this chapter you can read about:

Conditions of utilization for CE-conform operation .. 18
Conditions of utilization for UL certification Compax3S .. 21
Conditions of utilization for UL approval Compax3M ... 22
Conditions of utilization for UL approval PSUP .. 23

Current on the mains PE (leakage current).. 25
Supply networks ... 25

1.8.1. Conditions of utilization for CE-conform operation

- Industry and trade -

The EC guidelines for electromagnetic compatibility 2004/108/EC and for electrical operating devices for utilization within certain voltage limits 2006/95/EC are fulfilled when the following boundary conditions are observed:

Operation of devices only in the state in which they are delivered.

In order to ensure contact protection, all mating plugs must be present on the device connections even if they are not wired.
Please respect the specifications of the manual, especially the technical characteristics (mains connection, circuit breakers, output data, ambient conditions,...).

1.8.1.1 Conditions of utilization mains filter

Mains filter: A mains filter is required in the mains input line if the motor cable exceeds a certain length. Filtering can be provided centrally at the system mains input or separately for each device or with C3M for each axis system.
Use of the devices in a commercial and residential area (limit value class in accordance with EN 61800-3)
The following mains filters are available for independent utilization:

Device: Compax3S	Limit value class	Motor cable length	Mains filter Order No.:
S0xxV2	C2	< 10 m	without
	C2	> 10 m , < 100 m	NFI01/01
$\begin{aligned} & \hline \text { S1xxV2, } \\ & \text { S0xxV4, S150V4 } \end{aligned}$	C2	$<10 \mathrm{~m}$	without
	C2	$>10 \mathrm{~m},<100 \mathrm{~m}$	NFI01/02
S300V4	C3	$<10 \mathrm{~m}$	without
	C2, C3	> 10 m , < 100 m	NFI01/03
Device: Compax3H	Limit value class	Motor cable length	Mains filter Order No.:
H050V4	C2	< 10 m	without
	C2	$>10 \mathrm{~m},<50 \mathrm{~m}$	NFI02/01
H090V4	C2	$<10 \mathrm{~m}$	without
	C2	> $10 \mathrm{~m},<50 \mathrm{~m}$	NFI02/02
H1xxV4	C2	$<10 \mathrm{~m}$	without
	C2	> $10 \mathrm{~m},<50 \mathrm{~m}$	NFI02/03

Use of the devices in the industrial area (limit values class C3 in accordance with EN 61800-3)
The following mains filters are available for independent utilization:

Device: PSU	Limit value class	Reference: Axis system with motor cable	Mains filter Order No.:
P10	C3	$<6 \times 10 \mathrm{~m}$	NFI03/01
P10	C3	$<6 \times 50 \mathrm{~m}$	NFI03/02
P20	C3	$<6 \times 50 \mathrm{~m}$	NFI03/03
P30	C3	$<6 \times 50 \mathrm{~m}$	NFI03/03

Connection length: Connection between mains filter and device:
$\begin{array}{ll}\text { unshielded: } & <0.5 \mathrm{~m} \\ \text { shielded } & <5 \text { (fully shielded on ground - e.g. ground of control cabinet) }\end{array}$

1.8.1.2 Conditions of utilization for cables / motor filter

Motor and Feedback
 cable:

Operation of the devices only with motor and feedback cables whose plugs contain a special full surface area screening.

Compax3S motor < 100 m (the cable should not be rolled up!)
cable A motor output filter (see on page 351) is required for motor cables >20 m:

- MDR01/04 (max. 6.3 A rated motor current)
- MDR01/01 (max. 16 A rated motor current)
- MDR01/02 (max. 30 A rated motor current)

Compax3H motor A motor output filter is required for motor cables $>50 \mathrm{~m}$. Please contact us. cable

Compax3M motor cable
<80m per axis (the cable must not be rolled up!)
The entire length of the motor cable per axis combination may not exceed 300 m .
A motor output filter (see on page 351) is required for motor cables $>20 \mathrm{~m}$:

- MDR01/04 (max. 6.3 A rated motor current)
- MDR01/01 (max. 16 A rated motor current)
- MDR01/02 (max. 30 A rated motor current)

Shielding connection of the motor cable

The cable must be fully-screened and connected to the Compax3 housing. Use the cable clamps/shield connecting terminals furnished with the device.

The shield of the cable must also be connected with the motor housing. The fixing (via plug or screw in the terminal box) depends on the motor type.

Compax3M encoder <80m
 cable:

Cable für Corresponding to the specifications of the terminal clamp with a temperature range Compax3S, of up to $60^{\circ} \mathrm{C}$.
Compax3M

Cable für Compax3H

Corresponding to the specifications of the terminal clamp with a temperature range of up to $75^{\circ} \mathrm{C}$.

Cable installation: \bullet Signal lines and power lines should be installed as far apart as possible.

- Signal lines should never pass close to excessive sources of interference (motors, transformers, contactors etc.).
\bullet Do not place mains filter output cable parallel to the load cable.

1.8.1.3 Additional conditions of utilization

Motors: Operation with standard motors.

Control: Use only with aligned controller (to avoid control loop oscillation).

Grounding: Connect the filter housing and the device to the cabinet frame, making sure that the contact area is adequate and that the connection has low resistance and low inductance.
Never mount the filter housing and the device on paint-coated surfaces!
Compax3S300V4 For CE and UL conform operation of the Compax3S300V4, a mains filter is compulsory:

- 400 VAC / 0.740 mH certified in accordance with EN 61558-1 bzw. 61558-2-2
- We offer the mains filter as an accessory: LIR01/01

Accessories: Make sure to use only the accessories recommended by Parker
Connect all cable shields at both ends, ensuring large contact areas!

Warning:
This is a product in the restricted sales distribution class according to EN 61800-3. In a domestic area this product can cause radio frequency disturbance, in which case the user may be required to implement appropriate remedial measures.

1.8.2. Conditions of utilization for UL certification Compax3S

UL certification for Compax3S

conform to UL:	\bullet according to UL508C
Certified	\star E-File_No.: E235342

The UL certification is documented by a "UL" logo on the device (type specification plate).
"UL" logo:

Conditions of utilization

- The devices are only to be installed in a degree of contamination 2 environment (maximum).
- The devices must be appropriately protected (e.g. by a switching cabinet).
- The X2 terminals are not suitable for field wiring.
- Tightening torque of the field wiring terminals (green Phoenix plugs)
-C3S0xxV2
$0.57-0.79 \mathrm{Nm}$
5-7Lb.in
-C3S1xxV2,
-C3S300V4 $0.57-0.79 \mathrm{Nm}$
5-7Lb.in
1.25-1.7Nm
11-15Lb.in
- Temperature rating of field installed conductors shall be at least $60^{\circ} \mathrm{C}$. Use copper lines only
Please use the cables described in the accessories chapter (see on page 336, see on page 338), they feature a temperature rating of at least $60^{\circ} \mathrm{C}$.
- Maximum Surrounding Air Temperature: $45^{\circ} \mathrm{C}$.
- Motor over temperature monitoring is only supported, if the external temperature sensor is connected.
- Suitable for use on a circuit capable of delivering at least 5000 symmetrical amperes effectively and 480 Volts when protected with fuses. Fuses:
In addition to the main fuse, the devices must be equipped with a S201K, S203K, S271K or S273K circuit breaker with K characteristic made by ABB.
-C3S025V2: ABB, nom 480V 10A, 6kA
-C3S063V2: ABB, nom 480V, 16A, 6kA
- C3S100V2: ABB, nom 480V, 16A, 6kA
-C3S150V2: ABB, nom 480V, 20A, 6kA
-C3S015V4: ABB, nom 480V, 6A, 6kA
- C3S038V4: ABB, nom 480V, 10A, 6kA
- C3S075V4: ABB, nom 480V, 16A, 6kA
-C3S150V4: ABB, nom 480V, 20A, 6kA
-C3S300V4: ABB, nom 480V, 25A, 6kA

CAUTION

Risk of electric shock.
Discharge time of the bus capacitor is 10 minutes.

- The drive provides internal motor overload protection.

This must be set so that 200% of the motor nominal current are not exceeded.

- Cable cross-sections
\bullet Mains input: corresponding to the recommended fuses.
- Motor cable: corresponding to the Nominal output currents (see on page 389, see on page 390)
- Maximum cross-section limited by the terminals mm^{2} / AWG

\bullet C3S0xxV2	$2.5 \mathrm{~mm}^{2}$	AWG 12
\bullet C3S1xxV2,	$4.0 \mathrm{~mm}^{2}$	AWG 10
C3S0xxV4, C3S150V4		
\bullet C3S300V4	$6.0 \mathrm{~mm}^{2}$	AWG 7

1.8.3. Conditions of utilization for UL approval Compax3M

UL approval for Compax3M

Conform to UL:	\star in accordance with UL508C
Certified	\star E-File_No.: E235342

The UL approval is documented by a "UL" logo on the device (type specification plate).

Conditions of utilization

- The devices are only to be installed in a degree of contamination 2 environment (maximum).
- The devices must be appropriately protected (e.g. by a switching cabinet).
-Tightening torque of the field wiring terminals (green Phoenix plugs)

Device	X43: Motor connector	X15: Temperature monitoring
C3M050-150	0.5 Nm (4.43Lb.in)	0.22 Nm (1.95Lb.in)
C3M300	1.2Nm (10.62Lb.in)	$0.22 \mathrm{Nm}(1.95 \mathrm{Lb} . \mathrm{in})$

- Temperature rating of field installed conductors shall be at least $60^{\circ} \mathrm{C}$. Use copper lines only
Please use the cables described in the accessories chapter (see on page 336, see on page 338), they feature a temperature rating of at least $60^{\circ} \mathrm{C}$.
- Maximum Surrounding Air Temperature: $40^{\circ} \mathrm{C}$.
- Control voltage supply (24VDC) only permissible with "class 2" power supply.
- Compax3M may only be operated with a mains module of the PSUP series.
- Motor Over Temperature sensing is not provided by the drive unless the external temperature sensor is connected.

Caution!

Risk of electric shock.
Discharge time of the bus capacitor is 10 minutes.
The drive provides internal motor overload protection.
This must be set so that 200% of the motor nominal current are not exceeded.

- Cable cross-sections
- Mains input: corresponding to the recommended fuses.
- Motor cable: corresponding to the Nominal output currents (see on page 389, see on page 390)
\bullet Maximum cross-section limited by the terminals mm^{2} / AWG

Line cross-sections of the power connections (on the device bottoms)

Compax3 device:	Cross-section: Minimum... Maximum [with conductor sleeve]
M050, M100, M150	$0.25 \ldots 4 \mathrm{~mm}^{2}$ (AWG: $23 \ldots 11$)
M300	$0.5 \ldots 6 \mathrm{~mm}^{2}$ (AWG: $20 \ldots$ 10)

1.8.4. Conditions of utilization for UL approval PSUP

UL approval for mains modules PSUP

Conform to UL:	\star in accordance with UL508C
Certified	\bullet E-File_No.: E235342

The UL approval is documented by a "UL" logo on the device (type specification plate).

UL approval PSUP30 in preparation!

Conditions of utilization

- The devices are only to be installed in a degree of contamination 2 environment (maximum).
- The devices must be appropriately protected (e.g. by a switching cabinet).
\bullet Tightening torque of the field wiring terminals (green Phoenix plugs)

Device	X40: Ballast resistor	X41: Mains connector	X9: 24VDC
PSUP10	0.5 Nm (4.43Lb.in)	1.2 Nm (10.62Lb.in)	1.2 Nm $(10.62 \mathrm{Lb} . i n)$
PSUP20	0.5 Nm (4.43Lb.in)	1.7 Nm (15Lb.in)	1.2 Nm $(10.62 \mathrm{Lb} . i n)$
PSUP30	UL approval in preparation		

- Temperature rating of field installed conductors shall be at least $60^{\circ} \mathrm{C}$. Use copper lines only
Please use the cables described in the accessories chapter (see on page 336, see on page 338), they feature a temperature rating of at least $60^{\circ} \mathrm{C}$.
- Maximum Surrounding Air Temperature: $40^{\circ} \mathrm{C}$.
-Control voltage supply (24VDC) only permissible with "class 2" power supply.
- Suitable for use on a circuit capable of delivering not more than 5000 rms symmetrical amperes and 480 volts maximum and protected by (see below).
- The devices need a "branch circuit protection".

PSUP10D6

Maximum fuse rating per device	Measure for line and device protection: MCB miniature circuit breaker (K characteristic) 25A in accordance with UL category DIVQ (ABB) S203UP-K25 (480VAC)

PSUP20D6

Maximum fuse rating per device 2 special purpose fuses in line are required	Cable protection measure: MCB (K characteristic) with a rating of 50A / 4xxVAC (depending on the input voltage). (ABB) S203U-K50 (440VAC) Device protection measure: Fuses 80A / 700VAC per supply leg in accordance with UL category JFHR2: Bussmann 170M1366 or 170M1566D

Caution!

Risk of electric shock.
Discharge time of the bus capacitor is 10 minutes.

1.8.5. Conditions of utilization for UL certification Compax3H

UL certification for Compax3H

Conform to UL:	\bullet according to UL508C
Certified	\star E-File_No.: E235342

The UL certification is documented by a "UL" logo on the device (type specification plate).
"UL" logo:

LISTED

Conditions of utilization

-The devices are only to be installed in a degree of contamination 2 environment (maximum).

- The devices must be appropriately protected (e.g. by a switching cabinet).
- Tightening Torque of the Field Wiring Terminals.

Terminal clamps - max. line cross sections
The line cross sections must correspond to the locally valid safety regulations. The local regulations have always priority.

	Power clamps (minimum/maximum section)	
C3H050V4	$2.5 / 16 \mathrm{~mm}^{2}$	
	Massive	Multiwire
C3H090V4	$16 / 50 \mathrm{~mm}^{2}$	$25 / 50 \mathrm{~mm}^{2}$
C3H1xxV4	$25 / 95 \mathrm{~mm}^{2}$	$35 / 95 \mathrm{~mm}^{2}$

The standard connection clamps of Compax3H090V4 and Compax3H1xxV4 are not suitable for flat line bars.

Temperature rating of field installed conductors shall be at least $75^{\circ} \mathrm{C}$. Do only use copper lines.

- Maximum Surrounding Air Temperature: $45^{\circ} \mathrm{C}$.
\bullet Motor overtemperature monitoring is only supported, if the external temperature sensor is connected.
- Suitable for use on a circuit capable of delivering not more than 18000A symmetrical amperes effectively when protected with fuses as follows:

Device	Protection data
C 3 H 050 V 4	480 VAC 80 A
C 3 H 090 V 4	480 VAC 100 A
C 3 H 125 V 4	480 VAC 160 A
C 3 H 155 V 4	480 VAC 200 A

Caution!

Risk of electric shock.
Upon removing power to the equipment, please wait at least 10 minutes before accessing the device to ensure internal voltage levels are less than 50VDC.

- The drive provides internal motor overload protection.

This must be set so that 200% of the motor nominal current are not exceeded.

- Cable cross-sections
\bullet Mains input: corresponding to the recommended fuses.
- Motor cable: corresponding to the Nominal output currents (see on page 389, see on page 390)
- This device is provided with Solid State Short Circuit (output) Protection.

1.8.6. \quad Current on the mains PE (leakage current)

Caution!

This product can cause a direct current in the protective lead. If a residual current device (RCD) is used for protection in the event of direct or indirect contact, only a type B (all current sensitive) RCD is permitted on the current supply side of this product. Otherwise, a different protective measure must be taken, such as separation from the environment by doubled or enforced insulation or separation from the mains power supply by means of a transformer.
Please heed the connection instructions of the RCD supplier.
Mains filters do have high leakage currents due to their internal capacity. An internal mains filter is usually integrated into the servo controllers. Additional discharge currents are caused by the capacities of the motor cable and the motor winding. Due to the high clock frequency of the power output stage, the leakage currents do have high-frequency components. Please check if the FI protection switch is suitable for the individual application.
If an external mains filter is used, an additional leakage current will be produced. The figure of the leakage current depends on the following factors:

- Length and properties of the motor cable
- Switching frequency
- Operation with or without external mains filter
- Motor cable with or without shield network
- Motor housing grounding (how and where)

Remark:

- The leakage current is important with respect to the handling and usage safety of the device.
- A pulsing leakage current occurs if the supply voltage is switched on.

Please note:

The device must be operated with effective grounding connection, which must comply with the local regulations for high leakage currents ($>3.5 \mathrm{~mA}$).
Due to the high leakage currents it is not advisable to operate the servo drive with an earth leakage circuit breaker.

1.8.7. Supply networks

This product is designed for fixed connection to TN networks (TN-C, TN-C-S or TN-S). Please note that the line-earth voltage may not exceed 300VAC.
-When grounding the neutral conductor, mains voltages of up to 480VAC are permitted.
-When grounding an external conductor (delta mains, two-phase mains), mains voltages (external conductor voltages) of up to 240 VAC are permitted.

Devices which are to be connected to an IT network must be provided with a separating transformer. Then the devices are operated locally as in a TN network. The secondary sided center of the separating transformer must be grounded and connected to the PE connector of the device.

2. Compax3 T11: Positioning via Profibus (I20) or Profinet (I32)

Due to its high functionality, the Positioning version of Compax3 forms an ideal basis for many applications in high-performance motion automation. Up to 31 motion profiles with the motion functions:

- Absolute or relative positioning,
- electronic gearbox,
- register-related positioning,
- speed control,
- Stop - Set
- ...
can be created with the help of the PC software.
Via different operating modes:
- Speed Control
- Direct positioning
- Positioning with set selection
the motion functions can be triggered via the bus.
A number of different transfer telegrams, which can be conveniently adjusted with the Compax3 ServoManager), can be used to adjust cyclic bus communication to the requirements of specific applications.

Compax3 control technology

High-performance control technology and openness for various sender systems are fundamental requirements for a fast and high-quality automation of movement.

The structure and size of the device are of considerable importance. High-quality electronics are a fundamental requirement for the particularly small and compact form of the Compax3 devices. All connectors are located on the front of the Compax3S.

Partly integrated mains filters permit connection of motor cables up to a certain length without requiring additional measures. EMC compatibility is within the limits set by EN 61800-3, Class A. The Compax3 is CE-conform.

The intuitive user interface familiar from many applications, together with the oscilloscope function, wizards and online help, simplifies making and modifying settings via the PC.
The optional Operator control module (BDM01/01) (see on page 373) for Compax3S/F makes it possible to exchange devices quickly without requiring a PC.

Configuration Configuration is made with a PC with the help of the Compax3 ServoManager.

Profibus ratings (120)

Profile	\bullet PROFIdrive Profile drive system V3
DP Versions	\bullet DPV0/DPV1
Baud rate	\bullet up to 12 MHz
Profibus ID	\bullet C320
Device master file	 PAR_C320.GSD (can be found on the Compax3 - DVD)
Communication Simatic <-> Compax3	Simatic S7-300/400 - modules for Compax3 I20 and a corresponding help file can be found on the Compax3 CD in the folder: ..IProfibus\S7-moduls

Profinet Characteristics (132)

Profile	\bullet PROFIdrive profile drive technology V4.1
Profinet Version	\bullet Profinet IO (RT)
Transmission mode	\bullet 100BASE-TX (Full Duplex)
Profinet ID	\bullet C332
Device master file	GSDML-V2.1-Parker-Compax3-yyyymmd d.xml (can be found on the Compax3 DVD)
Communication Simatic <-> Compax3	Simatic S7-300/400 - modules for Compax3 I32 and a corresponding help file can be found on the Compax3 CD in the folder..IProfibus\S7-moduls (the same modules as with Profibus)

3. Compax3 device description

In this chapter you can read about:

Meaning of the status LEDs - Compax3 axis controller 28
Meaning of the status LEDs - PSUP (mains module) 29
Connections of Compax3S 30
Installation instructions Compax3M 39
PSUP/Compax3M Connections 41
Connections of Compax3H 51
Communication interfaces 59
Signal interfaces. 63
Mounting and dimensions 69
Safety function - STO (=safe torque off) 78
3.1 Meaning of the status LEDs - Compax3 axis controller

Device status LEDs	Right LED (red)	Left LED (green)
Voltages missing	off	off
During the booting sequence	alternately flashing	
No configuration present. SinCos Compax3 IEC61131-3 program not Compatible with Compax3 Firmware. comp no Compax3 IEC61131-3 program Hall signals invalid.	flashes slowly	off
Axis powerless		
Power supplied to axis; commutation calibration running	off	off
Axis powered	off	flashes slowly quickly
Axis in error state / error present / axis powered (error reaction 1)	flashes quickly	on
Axis in error state / error present / axis not powered (error reaction 2)	on	off
Compax3 faulty: Please contact us	on	on

Note on Compax3H: The internal device status LEDs are only connected to the external housing LEDs, if the RS232 jumper at X10 is fitted to the control and the upper dummy cover is fitted.

3.2 Meaning of the status LEDs - PSUP (mains module)

PSUP Status LEDs	Left LED (green)	Right LED (red)
Control voltage 24 VDC is missing	off	off
Error of mains module*	off	on
Address assignment CPU active or incorrect wiring	flashes quickly	-
Address assignment CPU completed	flashes slowly	-
Device state: INIT Mains voltage is missing or built up	flashes	flashes quickly
Device state: ERROR One or multiple errors occured	flashes	on
Device state: RUN	on	off
Device in bootloader state	flashes slowly	flashes slowly

*can be read out in each axis controller

Caution

When the control voltage is missing there is no indication whether or not high voltage supply is available.

3.3 Connections of Compax3S

In this chapter you can read about:

Compax3S connectors 30
Connector and pin assignment C3S. 31
Control voltage 24VDC / enable connector X4 C3S 33
Motor / Motor brake C3S connector X3 34
Compax3Sxxx V2 35
Compax3Sxxx V4 37

3.3.1. Compax3S connectors

$\mathbf{X 1}$	AC Supply	$\mathbf{X 2 0}$	HEDA in (Option M10, M11)	Option M21 inputs
$\mathbf{X 2}$	Ballast / DC power voltage	$\mathbf{X 2 1}$	HEDA out (Option M10, M11)	Option M21 inputs
$\mathbf{X 3}$	Motor / Brake	$\mathbf{X 2 2}$	Inputs Outputs (Option M10/12)	
$\mathbf{X 4}$	$24 \mathrm{VDC} /$ Enable	$\mathbf{X 2 3 /}$ $\mathbf{X 2 4}$	Bus (Option)	Connector type depends on the bus system!
$\mathbf{X 1 0 ~}$	RS232/RS485	$\mathbf{S 2 4}$	Bus settings	
$\mathbf{X 1 1 ~}$	Analog/Encoder	LED1	Device status LEDs	
$\mathbf{X 1 2 ~}$	Inputs/Outputs	LED2	HEDA LEDs	
$\mathbf{X 1 3}$	Motor position feedback	LED3	Bus LEDs	

Caution - Risk of Electric Shock!

Always switch devices off before wiring them!
Dangerous voltages are still present until 10 min . after switching off the power supply.

Caution!

When the control voltage is missing there is no indication whether or not high voltage supply is available.

Attention - PE connection!

PE connection with $10 \mathrm{~mm}^{2}$ via a grounding screw at the bottom of the device.

Attention - hot surface!

The heat dissipater can reach very high temperatures $\left(>70^{\circ} \mathrm{C}\right)$

Line cross sections of the line connections X1, X2, X3

Compax3 device:	Cross-section: Minimum... Maximum[mm²]
S025V2, S063V2	$0.25 \ldots 2.5$ (AWG: $24 \ldots$ 12)
S100V2, S150V2 S015V4, S038V4, S075V4, S150V4	$0.25 \ldots 4$ (AWG: $24 \ldots 10$)
S300V4	$0.5 \ldots 6$ (AWG: $20 \ldots$.... $)$

3.3.2. Connector and pin assignment C3S

Overview:

Further information on the assignment of the plug mounted at the particular device can be found below!

In detail: The fitting of the different plugs depends on the extension level of Compax3. In part, the assignment depends on the Compax3 option implemented.

The jumper drawn in at X 4 (at the left side in red) is used to enable the device for testing purposes. During operation, the enable input is in most cases switched externally.

3.3.3. Control voltage 24VDC / enable connector X4 C3S

PIN	Description
1	+24 V (supply)
2	Gnd24V
3	Enable_in
4	Enable_out_a
5	Enable_out_b

Line cross sections: minimum: $0.25 \mathrm{~mm}^{2}$ maximum: $2.5 \mathrm{~mm}^{2}$ (AWG: 24 ... 12)

Control voltage 24VDC Compax3S and Compax3H

Controller type	Compax3
Voltage range	$21-27 \mathrm{VDC}$
Current drain of the device	0.8 A
Total current drain	$0.8 \mathrm{~A}+$ Total load of the digital outputs + current for the motor holding brake
Ripple	0.5 Vpp
Requirement according to safe extra low voltage (SELV)	yes
Short-circuit proof	conditional (internally protected with 3.15AT)

Hardware - enable (input X4/3 = 24VDC)
This input is used as safety interrupt for the power output stage.
Tolerance range: 18.0V-33.6V / 720

"Safe torque off (X4/3=0V)

For implementation of the "safety torque off" safety feature in accordance with the "protection against unexpected start-up" described in EN1037. Observe instructions in the corresponding chapter (see on page 78) with the circuitry examples!
The energy supply to the drive is reliably shut off, the motor has no torque.
A relay contact is located between X4/4 and X4/5 (normally closed contact)

Enable_out_a - Enable_out_b	Power output stage is
Contact opened	activated
Contact closed	disabled

Series connection of these contacts permits certain determination of whether all drives are de-energized.

Relay contact data:

Switching voltage (AC/DC): 100mV - 60V
Switching current: 10mA-0.3A
Switching power: 1 mW ...7W

3.3.4. Motor / Motor brake C3S connector X3

PIN	Designation	Motor cable lead designation*		
1	U (motor)	$\mathrm{U} / \mathrm{L} 1 / \mathrm{C} / \mathrm{L}+$	1	U 1
2	V (motor)	$\mathrm{V} / \mathrm{L} 2$	2	V 2
3	W (motor)	$\mathrm{W} / \mathrm{L} 3 / \mathrm{D} / \mathrm{L}-$	3	W 3
4	PE (motor)	$\mathrm{YE} / \mathrm{GN}$	$\mathrm{YE} / \mathrm{GN}$	$\mathrm{YE} / \mathrm{GN}$
5	$\mathrm{BR}+$	Motor holding brake	WH	4
Br 1				
6	$\mathrm{BR}-$	Motor holding brake	BK	5
Br 2				

* depending on the cable type

Requirements for motor cable

< 100m (the cable should not be rolled up!)
A motor output filter (see on page 351) is required for motor cables $>20 \mathrm{~m}$:

Shielding connection of the motor cable

The cable must be fully-screened and connected to the Compax3 housing. Use the cable clamps/shield connecting terminals furnished with the device.

The shield of the cable must also be connected with the motor housing. The fixing (via plug or screw in the terminal box) depends on the motor type.

Attention - Please wire the motor holding brake!

Connect the brake only on motors which have a holding brake! Otherwise make no brake connections at all.

Requirements cables for motor holding brake

If a motor holding brake is present, one cable of the motor holding brake must be fed on the device side through the toroidal core ferrite provided as accessory ZBH0x/xx (63Ω @1MHz, di=5.1mm), in order to ensure error-free switching on and off of the motor holding brake.

Motor holding brake output

Motor holding brake output	Compax3
Voltage range	$21-27 \mathrm{VDC}$
Maximum output current (short circuit proof)	1.6 A

Motor cable

3.3.5. Compax3Sxxx V2

In this chapter you can read about:
Main voltage supply C3S connector X1 .. 35
Braking resistor / high voltage DC C3S connector X2 .. 36

3.3.5.1 Main voltage supply C3S connector X1

Device protection
By cyclically switching on and off the power voltage, the input current limitation can be overloaded, which will cause a device error.

Therefore please wait at least 2 minutes after switching off before you switch the device on again!

Power supply plug X1 for 1 AC 230VAC/240VAC devices

PIN	Designation
1	L
2	N
3	PE

Mains connection Compax3S0xxV2 1AC

Controller type	S025V2	S063V2
Continuous working voltage	Single phase 230VAC/240VAC	
	$80-253 \mathrm{VAC} / 50-60 \mathrm{~Hz}$	
Receiver current consumption	6 Arms	13 Arms
Maximum fuse rating per device	10 A (automatic circuit breaker K)	16 A (automatic circuit breaker K)

* for UL conform operation (see on page 21), a miniature circuit breaker, K characteristic, Type S203 is to be used.

Caution - Risk of Electric Shock!

Always switch devices off before wiring them!
Dangerous voltages are still present until 10 min . after switching off the power supply.

Power supply plug X1 for 3AC 230VAC/240VAC devices

PIN	Designation
1	L1
2	L2
3	L3
4	PE

Mains connection Compax3S1xxV2 3AC

Controller type	S100V2	S150V2
Supply voltage	Three phase 3* 230VAC/240VAC	
	$80-253 \mathrm{VAC} / 50-60 \mathrm{~Hz}$	
Input current	10 Arms	13 Arms
Maximum fuse rating per device	16 A	20A
	MCB miniature circuit breaker, K characteristic	

[^0]Caution! The 3AC V2 devices must only be operated with three phases!
Caution - Risk of Electric Shock!
Always switch devices off before wiring them!
Dangerous voltages are still present until 10 min . after switching off the power
supply.

3.3.5.2 Braking resistor / high voltage DC C3S connector X2

The energy generated during braking operation is absorbed by the Compax3 storage capacity.
If this capacity is too small, the braking energy must be drained via a braking resistor.

Braking resistor / high voltage supply plug X2 for 1AC 230VAC/240VAC devices

PIN	Designation
1	factory use
2	- braking resistor (not short-circuit protected!)
3	PE
4	+ braking resistor (not short-circuit protected!)
5	factory use

Braking operation Compax3S0xxV2 1AC

Controller type	S025V2	S063V2
Capacitance / storable energy	$560 \mu \mathrm{~F} / 15 \mathrm{Ws}$	$1120 \mu \mathrm{~F} / 30 \mathrm{Ws}$
Minimum braking- resistance	100Ω	56Ω
Recommended nominal power rating	$20 \ldots 60 \mathrm{~W}$	$60 \ldots 180 \mathrm{~W}$
Maximum continuous current	8 A	15 A

Caution!

The power voltage DC of two Compax3 1AC V2 devices (230VAC/240VAC devices) must not be connected.

Braking resistor / high voltage supply plug X2 for 3AC 230VAC/240VAC devices

PIN	Description	
1	+ Braking resistor	no short-circuit
protection!		
2	- Braking resistor	
3	PE	
4	+ DC high voltage supply	
5	- DC high voltage supply	

Braking operation Compax3S1xxV2 3AC

Controller type	S100V2	S150V2
Capacitance / storable energy	$780 \mu \mathrm{~F} / 21 \mathrm{Ws}$	$1170 \mu \mathrm{~F} / 31 \mathrm{Ws}$
Minimum braking- resistance	22Ω	15Ω
Recommended nominal power rating	$60 \ldots 450 \mathrm{~W}$	$60 \ldots 600 \mathrm{~W}$
Maximum continuous current	20 A	20 A

Connection of a braking resistor

Minimum line cross section: $1.5 \mathrm{~mm}^{2}$
Maximum line length: 2 m
Maximum output voltage: 400VDC

3.3.6. Compax3Sxxx V4

In this chapter you can read about:
Power supply connector X1 for 3AC 400VAC/480VAC-C3S devices 37
Braking resistor / high voltage supply connector X2 for 3AC 400VAC/480VAC_C3S devices

3.3.6.1 Power supply connector X1 for 3AC 400VAC/480VAC-C3S devices

Device protection
By cyclically switching on and off the power voltage, the input current limitation can be overloaded, which will cause a device error.

Therefore please wait at least 2 minutes after switching off before you switch the device on again!

PIN	Designation
1	L1
2	L2
3	L3
4	PE

Mains connection Compax3SxxxV4 3AC

Controller type	S015V4	S038V4	S075V4	S150V4	S300V4
Continuous working voltage	Three phase $3^{*} 400 \mathrm{VAC} / 480 \mathrm{VAC}$ $80-528 \mathrm{VAC} / 50-60 \mathrm{~Hz}$				
Receiver current consumption	3 Aeff	6 Arms	10 Arms	16 Arms	22 Arms
Maximum fuse rating per device	6 A	10 A	16 A	20A	25A

* for UL conform operation (see on page 21), a miniature circuit breaker, K characteristic, Type S203 is to be used.

The 3AC V4 devices must only be operated with three phases!

Caution - Risk of Electric Shock!

Always switch devices off before wiring them!
Dangerous voltages are still present until 10 min . after switching off the power supply.

3.3.6.2 Braking resistor / high voltage supply connector X2 for 3AC 400VAC/480VAC_C3S devices

PIN	Description	
1	+ Braking resistor	no short-circuit protection!
2	- Braking resistor	
3	PE	
4	+ DC high voltage supply	
5	- DC high voltage supply	

Braking operation Compax3SxxxV4 3AC

Controller type	S015V4	S038V4	S075V4	S150V4	S300V4
Capacity / storable energy 400V / 480V	$235 \mu \mathrm{~F}$	$235 \mu \mathrm{~F}$	$470 \mu \mathrm{~F}$	$690 \mu \mathrm{~F}$	$1230 \mu \mathrm{~F}$
$37 / 21 \mathrm{Ws}$	$37 / 21 \mathrm{Ws}$	$75 / 42 \mathrm{Ws}$	$110 / 61 \mathrm{Ws}$	$176 / 98 \mathrm{Ws}$	
Minimum ballast - resistance	100Ω	100Ω	56Ω	47Ω	15Ω
Recommended nominal power rating	$60 \ldots$	$60 \ldots 250 \mathrm{~W}$	$60 \ldots 500$	$60 \ldots 1000$	$60 \ldots 1000$
100 W	W	W	W		
Maximum continuous current	10 A	10 A	15 A	20 A	30 A

Connection of a braking resistor

Minimum line cross section: $1.5 \mathrm{~mm}^{2}$
Maximum line length: 2 m
Maximum output voltage: 800 VDC

3.3.6.3 Connection of the power voltage of 2 C3S 3AC devices

Caution!

The power voltage DC of the single phase Compax3 servo axes must not be connected

In order to improve the conditions during brake operation, the DC power voltage of 2 servo axes may be connected.
The capacity as well as the storable energy are increased; furthermore the braking energy of one servo axis may be utilized by a second servo axis, depending on the application.

It is not permitted to connect the power voltage in order to use one brake circuit for two servo axes, as this function cannot be ensured reliably.

Note the following:

Caution! In case of non-compliance with the following instructions, the device may be destroyed!

- You can only connect two similar servo axes (same power supply; same rated currents)
- Connected servo axes must always be fed separately via the AC power supply.

If the external pre-fuse of one of the servo axes takes action, the second servo axis must also be disconnected automatically.

Please connect as follows:

Servo axis $1 \times 2 / 4$ to servo axis $2 \times 2 / 4$
Servo axis $1 \times 2 / 5$ to servo axis $2 \times 2 / 5$

3.4 Installation instructions Compax3M

General introductory notes

- Operation of the Compax3M multi-axis combination is only possible in connection with a PSUP (mains module).
- Axis controllers are aligned at the right of the mains module.
- Arrangement within the multi-axis combination sorted by power (with the same device types according to device utilization), the axis controller with the highest power is placed directly at the right of the mains module. e.g. first the device type with high utilization, at the right of this, the same device type with a lower utilization.
- Max. 15 Compax3M (axis controllers) per PSUP (mains module) are permitted (please respect the total capacity of max. $2400 \mu \mathrm{~F}$ for PSUP10, max. $5000 \mu \mathrm{~F}$ for PSUP20).
- The continuation of the current rail connection outside the axis combination is not permitted and will lead to a loss of the CE and UL approbation.
- External components may not be connected to the rail system.

Required tools:

- Allen key M5 for fixing the devices in the control cabinet.
- Crosstip screwdriver M4 for connection rails of the DC rail modules.
- Crosstip screwdriver M5 for grounding screw of the device.
- Flat-bladed screwdriver $0.4 \times 2.5 / 0.6 \times 3.5 / 1.0 \times 4.0$ for wiring and mounting of the phoenix clamps.

Order of installation

- Fixing the devices in the control cabinet.
- Predrilling the mounting plate in the control cabinet according to the specifications. Dimensions. Fit M5 screws loosely in the bores.
- Fit device on the upper screws and place on lower screw. Tighten screws of all devices. The tightening torque depends on the screw type (e.g. 5.9 Nm for M5 screw DIN 912 8.8).
-Connection of the internal supply voltage.
The Compax3M axis controllers are connected to the supply voltages via the rail modules. Details (see on page 43).
\bullet Deblocking the yellow protective cover with a flat-bladed screwdriver on the upper surface (click mechanism). Remove the closing devices (contact protection) that are not required from between the devices.
- Connecting the rail modules, beginning with the mains module. For this, loosen crosshead screws (5 screws at the right in the mains module, all 10 screws in the next axis controller), push the rails one after the other against to the left and tighten screws. Proceed accordingly for all adjacent axis controllers in the combination.
Max. tightening torque: 1.5 Nm .
- Close all protective covers. The protective covers must latch audibly.

Please note:
Insufficiently fixed screw connections of the DC power voltage rails may lead to the destruction of the devices.

Protective seals

Caution - Risk of Electric Shock!

In order to secure the contact protection against the alive rails, it is absolutely necessary to respect the following:

- Insert the yellow plastic comb at the left or right of the rails.

Make sure that the yellow plastic combs are placed at the left of the first device and at the right of the last device in the system and have not been removed.
\bullet Setup of the devices only with closed protective covers.

- Connect protective earth to mains module (M5 crosshead screw on front of device bottom).
-Connecting the internal communication. Details (see on page 60).
-Connecting the signal and fieldbus connectors. Details (see on page 63).
- Connection of mains power supply Details (see on page 45) ballast resistor details (see on page 47) and motor details (see on page 49).
- Connecting the configuration interface to the PC. Details (see on page 60).

3.5 PSUP/Compax3M Connections

In this chapter you can read about:

Front connector ... 41 42Connections on the device bottom.
Connections of the axis combination 43
Control voltage 24VDC PSUP (mains module) 44
Mains supply PSUP (mains module) X41 45
Braking resistor / temperature switch PSUP (mains module) 47
Motor / motor brake Compax3M (axis controller) 49
X14 Safety technology option S1 for Compax3M (axis controller). 50
Safety technology option S3 for Compax3M (axis controller) 50

3.5.1. Front connector

\mathbf{P}	PSUP Mains module
LED1	Status LEDs Mains module
S1	Basic address
X3	Configuration interface (USB)
X9	Supply voltage 24VDC
M	Axis controller
LED2	Status LEDs of the axis
S10	Function
X11	Analog/Encoder
X12	Inputs/Outputs
X13	Motor position feedback
X14	Safety technology (Option S1) (replaced by X28 with Option S3)
X15	Motor temperature monitoring
LED3 HEDA LEDs X20 HEDA in (Option) X21 HEDA out (Option) X22 Inputs Outputs (Option M10/12) Bus (option) connector type depends on the bus system! X23 Bus (option) depends on the bus system! X24 Bus LEDs LED4 Bus settings S24 Behind the yellow protective covers you can find the rails for the supply voltage connection. - Supply voltage 24VDC DC power voltage supply 1	

3.5.2. Connections on the device bottom

Caution - Risk of Electric Shock!

Always switch devices off before wiring them!
Dangerous voltages are still present until 10 min . after switching off the power supply.

Caution!

When the control voltage is missing there is no indication whether or not high voltage supply is available.

Attention - PE connection!

PE connection with $10 \mathrm{~mm}^{2}$ via a grounding screw at the bottom of the device.

Attention - hot surface!

The heat dissipater can reach very high temperatures $\left(>70^{\circ} \mathrm{C}\right)$

\mathbf{P}	Mains module PSUP
X40	Ballast resistor
X41	Mains supply VAC/PE
1	Central ground connection for the axis system, with 10 mm^{2} to the ground screw on the housing.
4	Fan*
\mathbf{M}	Axis controller
X43	Motor / Brake
2	Fixing for motor shield clamp
4	Fan*
3	optionally, the axis controller features a ground screw on the housing, if the grounding is not possible via the back plate.

Line cross-sections of the power connections (on the device bottoms)

Compax3 device:	Cross-section: Minimum... Maximum [with conductor sleeve]
M050, M100, M150	$0.25 \ldots 4 \mathrm{~mm}^{2}$ (AWG: $23 \ldots$ 11)
M300	0.5 ... $6 \mathrm{~mm}^{2}$ (AWG: 20 ... 10)
PSUP10	Mains supply: $0.5 \ldots 6 \mathrm{~mm}^{2}$ (AWG: $20 \ldots$ 10) Braking resistor: $0.25 \ldots 4 \mathrm{~mm}^{2}$ (AWG: $23 \ldots$ 11)
PSUP20 \& PSUP30	Mains supply: $0.5 \ldots 16 \mathrm{~mm}^{2}$ (AWG: $20 \ldots 6$) Braking resistor: $0.25 \ldots 4 \mathrm{~mm}^{2}$ (AWG: $23 \ldots$ 11)

3.5.3. Connections of the axis combination

The axis controllers are connected to the supply voltages via rails.

- Supply voltage 24VDC
-DC power voltage supply
The rails can be found behind the yellow protective covers. In order to connect the rails of the devices, you may have to remove the yellow plastic device inserted at the side.

CAUTION: Risk of Electric Shock

Caution - Risk of Electric Shock!

Please note before opening:
-Warning - Possible risk of electric shock; disconnect power before removing cover.
-Caution! - Dangerous electric voltage! Respect discharge time.

Caution - Risk of Electric Shock!

Always switch devices off before wiring them!
Dangerous voltages are still present until 10 min . after switching off the power supply.

Caution!

When the control voltage is missing there is no indication whether or not high voltage supply is available.

Protective seals

Caution - Risk of Electric Shock!

In order to secure the contact protection against the alive rails, it is absolutely necessary to respect the following:

- Insert the yellow plastic comb at the left or right of the rails.

Make sure that the yellow plastic combs are placed at the left of the first device and at the right of the last device in the system and have not been removed.

- Setup of the devices only with closed protective covers.

Maximum capacity in the axis system:

-PSUP10: $2400 \mu \mathrm{~F}$
-PSUP20 \& PSUP30: $5000 \mu \mathrm{~F}$

Reference value for the required capacity in an axis system

$100 \mu \mathrm{~F}$ per kW of the temporal medium value of the total power (transmissions + power dissipation) in the axis system.

Example: PSUP20 ($1175 \mu \mathrm{~F}$) with one axis controller ($440 \mu \mathrm{~F}$)
Total power $15 \mathrm{~kW}, 100 \mu \mathrm{~F} / \mathrm{kW}=>1500 \mu \mathrm{~F}$ required in the axis system.
Axis system: $1615 \mu \mathrm{~F}$ are sufficient.

Protective seals

Caution!

The user is responsible for protective covers and/or additional safety measures in order to prevent damages to persons and electric accidents.

3.5.4. Control voltage 24VDC PSUP (mains module)

Connector X9

Pin	Designation
1	+24 V
2	GND24V

Line cross sections:
minimum: $0.5 \mathrm{~mm}^{2}$ with conductor sleeve maximum: $6 \mathrm{~mm}^{2}$ with conductor sleeve (AWG: 20 ... 10)

Control voltage 24 VDC PSUP

Device type	PSUP
Voltage range	$21-27 \mathrm{VDC}$
Ripple	0.5 Vpp
Requirement according to safe extra low voltage (SELV)	yes (class 2 mains module)
Current drain PSUP	PSUP10: 0.2A PSUP20 / PSUP30: 0.3A
	C3M050D6: 0.85 3M100D6: 0.85A
Electric current drain Compax3M	C3M150D6: 0.85A C3M300D6: 1.0 A + Total load of the digital outputs + current for the motor holding brake

3.5.5. \quad Mains supply PSUP (mains module) X41

Device protection
By cyclically switching on and off the power voltage, the input current limitation can be overloaded, which may cause damage to the device.

Wait at least one minute between two switching on processes!

Operation of the PSUP30 only with mains filter!

Connector X41

Pin	Designation
PE	Earth conductor
L3	Phase 3
L2	Phase 2
L1	Phase 1

Mains connection PSUP10D6

Device type PSUP10	230V	400V	480 V
Supply voltage	$230 \mathrm{VAC} \pm 10 \%$	$400 \mathrm{VAC} \pm 10 \%$	$480 \mathrm{VAC} \pm 10 \%$
$50-60 \mathrm{~Hz}$	$50-60 \mathrm{~Hz}$	$50-60 \mathrm{~Hz}$	
Rated voltage	3 AC 230 V	$3 \mathrm{AC} \mathrm{400V}$	$3 \mathrm{AC} \mathrm{480V}$
Input current	22 Arms	22 Arms	18 Arms
Output Voltage	$325 \mathrm{VDC} \pm 10 \%$	$565 \mathrm{VDC} \pm 10 \%$	$680 \mathrm{VDC} \pm 10 \%$
Output power	6 kW	10 kW	10 kW
Pulse power (<5s)	12 kW	20 kW	20 kW
Heat dissipation	60 W	60 W	60 W
Maximum fuse rating per device	Measure for line and device protection: MCB miniature circuit breaker (K characteristic) 25 A in accordance with UL category DIVQ Recommendation: (ABB) S203UP-K25 (480VAC)		

Mains connection PSUP20D6

Device type PSUP20	230V	400V	480 V
Supply voltage	$230 \mathrm{VAC} \pm 10 \%$	$400 \mathrm{VAC} \pm 10 \%$	
$50-60 \mathrm{~Hz}$	$40-60 \mathrm{~Hz}$	$50 \mathrm{VAC} \pm 10 \%$	
Rated voltage	3 AC 230 V	3 AC 400 V	3 AC 480 V
Input current	44 Arms	44 Arms	35 Arms
Output Voltage	$325 \mathrm{VDC} \pm 10 \%$	$565 \mathrm{VDC} \pm 10 \%$	$680 \mathrm{VDC} \pm 10 \%$
Output power	12 kW	20 kW	20 kW
Pulse power (<5s)	24 kW	40 kW	40 kW
Heat dissipation	120 W	120 W	120 W
Maximum fuse rating per device 2 special purpose fuses in line are required	Cable protection measure: MCB (K characteristic) with a rating of 50A / 4xxVAC (depending on the input voltage) Recommendation: (ABB) S203U-K50 (440VAC) Device protection measure: Circuit breakers 80A / 700VAC per supply leg in accordance with UL category JFHR2 Requirement: Bussmann 170M1366 or 170M1566D		

PSUP30D6 Mains connection

Device type PSUP30	230V	400V	480 V
Supply voltage	$230 \mathrm{VAC} \pm 10 \%$	$400 \mathrm{VAC} \pm 10 \%$	
$50-60 \mathrm{~Hz}$	$40-60 \mathrm{~Hz}$	$480 \mathrm{VAC} \pm 10 \%$ $50-60 \mathrm{~Hz}$	
Rated voltage	3 AC 230 V	$3 \mathrm{AC} \mathrm{400V}$	3 AC 480 V
Input current	50 Arms	50 Arms	42 Arms
Output Voltage	$325 \mathrm{VDC} \pm 10 \%$	$565 \mathrm{VDC} \pm 10 \%$	$680 \mathrm{VDC} \pm 10 \%$
Output power	17 kW	30 kW	30 kW
Pulse power (<5s)	34 kW	60 kW	60 kW
Heat dissipation	140 W	140 W	140 W
Maximum fuse rating per device 2 special purpose fuses in line are required	Cable protection measure: MCB (K characteristic) with a rating of 63A / 4xxVAC (depending on the input voltage) Recommendation: (ABB) S203U-K63 (440VAC) Device protection measure: Circuit breakers 125A / 700VAC per supply leg in accordance with UL category JFHR2 Requirement: Bussmann 170M1368 or 170M1568D		

Caution!

Only three-phase operation of the PSUP devices is permitted!
The PSUP30 mains module may only be operated with mains filter (see on page 353)

Required mains filter for the PSUP30: $0.45 \mathrm{mH} / 55 \mathrm{~A}$
We offer the following mains filters:
-LCG-0055-0.45 mH (WxDxH: $180 \mathrm{~mm} \times 140 \mathrm{~mm} \times 157 \mathrm{~mm} ; 10 \mathrm{~kg}$)

- LCG-0055-0.45 mH-UL (with UL approval) (WxDxH: $180 \mathrm{~mm} \times 170 \mathrm{~mm} \times$ $157 \mathrm{~mm} ; 15 \mathrm{~kg}$)

Dimensional drawing: LCG-0055-0.45 mH

Dimensional drawing: LCG-0055-0.45 mH-UL

Caution-Risk of Electric Shock!

Always switch devices off before wiring them!
Dangerous voltages are still present until 10 min . after switching off the power supply.

3.5.6. Braking resistor / temperature switch PSUP (mains module)

The energy generated during braking operation must be dissipated via a braking resistor.

Connector X40

Pin	Description	
$+R$	+ Braking resistor	short-circuit proof!
$-R$	- Braking resistor	
PE	PE	
T1R	Temperature Switch	
T2R	Temperature Switch	

Braking operation PSUPxxD6 (mains module)

Device type	PSUP10	PSUP20	PSUP30
Capacitance / storable energy	$550 ~ \mu \mathrm{~F} /$ 92 Ws at 400 V 53 Ws at 480 V	$1175 \mu \mathrm{~F} /$ 197 Ws at 400 V 114 Ws at 480 V	$1175 \mu \mathrm{~F} /$ 197 Ws at 400 V 114 Ws at 480 V
Minimum braking- resistance	27Ω	15Ω	10Ω
Recommended nominal power rating	$500 \ldots 1500 \mathrm{~W}$	$500 \ldots 3500 \mathrm{~W}$	$500 \ldots 5000 \mathrm{~W}$
Pulse power rating for 1s	22 kW	40 kW	60 kW
Maximum permissible continuous current	13 A	15 A	15 A

Maximum capacity in the axis system:

-PSUP10: $2400 \mu \mathrm{~F}$
-PSUP20 \& PSUP30: $5000 \mu \mathrm{~F}$

Reference value for the required capacity in an axis system

$100 \mu \mathrm{~F}$ per kW of the temporal medium value of the total power (transmissions + power dissipation) in the axis system.

Example: PSUP20 (1175 $\mu \mathrm{F}$) with one axis controller ($440 \mu \mathrm{~F}$)
Total power $15 \mathrm{~kW}, 100 \mu \mathrm{~F} / \mathrm{kW}=>1500 \mu \mathrm{~F}$ required in the axis system. Axis system: $1615 \mu \mathrm{~F}$ are sufficient.

Connection of a braking resistor on PSUP (mains module)

Minimum line cross section:	$1.5 \mathrm{~mm}^{2}$
Maximum line length:	2 m
Maximum intermediate circuit voltage:	810 VDC
Switch-on threshold:	780 VDC
Hysteresis	20 VDC

Braking operation Compax3MxxxD6 (axis controller)

Device type Compax3	M050	M100	M150	M300
Capacityl storable energy	$110 \mu \mathrm{~F} /$ 18 Ws at 400 V 10 Ws at 480 V	$220 \mu \mathrm{~F} /$ 37 Ws at 400 V 21 Ws at 480 V	$220 \mu \mathrm{~F} /$ 37 Ws at 400 V 21 Ws at 480 V	$440 \mu \mathrm{~F} /$ 74 Ws at 400 V 42 Ws at 480 V

3.5.6.1 Temperature switch PSUP (mains module)

Connector X40 Pin T1R, T2R

Temperature monitoring:

The temperature switch (normally closed contact) must be connected, unless an error message will be issued.

Temperature switch/relay

No galvanic separation, the temperature sensor (normally closed contact) must comply with the safe separation according to EN 60664.
If there is no temperature monitoring due to the connected braking resistor, the T1R and T2R connections must be connected by a jumper.

Caution!

Without temperature monitoring, the braking resistor might be destroyed.

3.5.7. Motor / motor brake Compax3M (axis controller)

Connector X43

PIN	Designation	Motor cable lead designation*		
BR-	Motor holding brake *	BK	5	Br 2
$\mathrm{BR}+$	Motor holding brake *	WH	4	Br 1
PE	PE (motor)	$\mathrm{YE} / \mathrm{GN}$	$\mathrm{YE} / \mathrm{GN}$	$\mathrm{YE} / \mathrm{GN}$
W	W (motor)	$\mathrm{W} / \mathrm{L} 3 / \mathrm{D} / \mathrm{L}-$	3	U
V	V (motor)	$\mathrm{V} / \mathrm{L} 2$	2	U 2
U	U (motor)	$\mathrm{U} / \mathrm{L} 1 / \mathrm{C} / \mathrm{L}+$	1	U 1

* depending on the cable type
<80m per axis (the cable must not be rolled up!)
The entire length of the motor cable per axis combination may not exceed 300 m .
A motor output filter (see on page 351) is required for motor cables $>20 \mathrm{~m}$:
- MDR01/04 (max. 6.3 A rated motor current)
- MDR01/01 (max. 16 A rated motor current)
- MDR01/02 (max. 30 A rated motor current)

Shielding connection of the motor cable

The cable must be fully-screened and connected to the Compax3 housing. Use the cable clamps/shield connecting terminals furnished with the device.

The shield of the cable must also be connected with the motor housing. The fixing (via plug or screw in the terminal box) depends on the motor type.

Motor cables can be found in the accessories chapter of the device description.
Motor holding brake output

Motor holding brake output	Compax3
Voltage range	$21-27 \mathrm{VDC}$
Maximum output current (short circuit proof)	1.6 A

Attention - Please wire the motor holding brake!

Connect the brake only on motors which have a holding brake! Otherwise make no brake connections at all.

Requirements cables for motor holding brake

If a motor holding brake is present, one cable of the motor holding brake must be fed on the device side through the toroidal core ferrite provided as accessory ZBH0x/xx (63Ω @1MHz, di=5.1mm), in order to ensure error-free switching on and off of the motor holding brake.

3.5.7.1 Measurement of the motor temperature of Compax3M (axis controller)

Connector X15

The acquisition of the motor temperature by the axis controller can either take place via the connection of X15 (Tmot) or via the feedback cable and the corresponding connection on X13 PIN10.

Pin	Description
1	+5 V
2	Sensor

The temperature acquisition on X 15 Tmot can not be connected at the same time as X13 Pin 10.

3.5.8. X14 Safety technology option S1 for Compax3M (axis controller)

Connector X14 (Not available with Safety option S3)

Pin	Description	
1	STO1/	+24VDC
2	STO-GND	GND
3	STO2/	+24 VDC
4	STO-GND	GND

Note!

If the Compax3M axis controller features a safety option, these connections must also be wired, otherwise it is not possible to set up the axis.

3.5.9. Safety technology option S3 for Compax3M (axis controller)

For a description of the S3 safety option, please refer to the following manuals:

- 192-120210 Installation Manual Safety Option S3 for Compax3M
- 192-120211 Programming Manual Safety Option S3 for Compax3M
- 192-120212 Description of the Standard I/O Profile R0110001xx for Option S3 (Compax3M)
These manuals can be found on the Compax3 DVD in the ""Safety_Option_S3" folder.

3.6 Connections of Compax3H

In this chapter you can read about:

Compax3H plugs/connections ... 51
Connection of the power voltage. 52
Compax3H connections front plate 53
Plug and pin assignment C3H 54
Motor / Motor brake C3H 56
Control voltage 24 VDC C3H 57
Mains connection Compax3H 57
Braking resistor / supply voltage C 3 H 58

3.6.1. Compax3H plugs/connections

The following figure is an example for all sizes.
The fitting of the different controller plugs depends on the extension level of Compax3.

(1): Dummy cover with display of the external device status LEDs.
(2): lower clamp cover, fixed by 2 screws at the device bottom.
(3): RS232 programming interface

Connection to the PC via adapter cable SSK32/20 (furnished with the device) and standard RS232 cable SSK1.
(4): Control
(5): Power connections

Always switch devices off before wiring them!

Dangerous voltages are still present until 5 minutes after switching off the power supply!

Caution!

If the control voltage is missing and if the X10-X10 jumper is not fitted (VBK17/01) on the control part, the availability of power voltage is not displayed.

PE connection

PE connection with $10 \mathrm{~mm}^{2}$ via a grounding screw at the bottom of the device.

Attention hot surface!

Metal parts can heat up to a temperature of $90^{\circ} \mathrm{C}$ during operation.

3.6.2. Connection of the power voltage

The terminal block of the drive can be found under the front cover. It is secured with 2 screws at the bottom of the device. Remove the bottom cover in order to access the connection clamps.
Make sure that all live parts are covered by the housing after installation.
Illustration of the connection clamps exemplarily for all sizes:

L1, L2, L3: 3 phase mains connection M1, M2, M3: Motor connections
DC+, DC-: DC link voltage
(1) DBR+ and DBR-: Connection of external braking resistor
(2) AUX1, AUX2: only with C3H1xxV4 external supply (AC) for device ventilator L, N

- All shields must be connected via a cable joint to the cable feed through plate.
- Braking resistor and cable must be shielded if they are not installed in a control cabinet.
- The standard connection clamps of C3H090V4 and C3H1xxV4 are not suitable for flat line bars.
Attention: The MOT/TEMP connection is not supported by the Compax3H050; do therefore not wire this connection!

Terminal clamps - max. line cross sections

The line cross sections must correspond to the locally valid safety regulations. The local regulations have always priority.

	Power clamps (minimum/maximum section)		
C3H050V4	$2.5 / 16 \mathrm{~mm}^{2}$		
	Massive	Multiwire	
C3H090V4	$16 / 50 \mathrm{~mm}^{2}$	$25 / 50 \mathrm{~mm}^{2}$	
C3H1xxV4	$25 / 95 \mathrm{~mm}^{2}$	$35 / 95 \mathrm{~mm}^{2}$	

The standard connection clamps of Compax3H090V4 and Compax3H1xxV4 are not suitable for flat line bars.

Cover plate for cable feed through

The cable feed through holes have the following dimensions:	
C3H050V4	28.6 mm for M20, PG16 and $1 / 2^{\prime \prime}$ NPT (America). 37.3 mm for M32, PG29 and 1" NPT (America).
C3H090V4	22.8 mm for M20, PG16 and $1 / 2^{\prime \prime}$ NPT (America). 28.6mm for M25, PG21 and $3 / 4$ " NPT (America). 47.3 mm for M40, PG36 and $11 /{ }^{\prime \prime}$ NPT (America). 54.3 mm for M50, PG42and $11 / 2^{\prime \prime}$ NPT (America).
C3H1xxV4	22.8 mm for M20, PG16 and $1 / 2$ " NPT (America) 28.6 mm for M25, PG21 and $3 / 4$ " NPT (America)

Recommended tightening torques

	High voltage supply	Ballast resistor	Grounding
C3H050V4	$4 \mathrm{Nm} / 35 \mathrm{lb}-\mathrm{in}$	$4 \mathrm{Nm} / 35 \mathrm{lb}-\mathrm{in}$	$4.5 \mathrm{Nm} / 40 \mathrm{lb}-\mathrm{in}$
C3H090V4	$6-8 \mathrm{Nm} / 53-70 \mathrm{lb}-\mathrm{in}$	$6-8 \mathrm{Nm} / 53-70 \mathrm{lb}-\mathrm{in}$	$6-8 \mathrm{Nm} / 53-70 \mathrm{lb}-\mathrm{in}$
C3H1xxV4	$15-20 \mathrm{Nm} / 132-177 \mathrm{lb}-\mathrm{in}$	$0.7 \mathrm{Nm} / 6.1 \mathrm{lb}-\mathrm{in}$	$42 \mathrm{Nm} / 375 \mathrm{lb}-\mathrm{in}$

cable glands

Use metallic cable joints permitting a 360° shielding in order to comply with the EMC directive.

1: Cable feed through plate
2: metallic joint with 360° shielding for EMC compliant design
The device must be grounded without interruption according to EN 61800-5-1. The mains supply lines must be protected with a suitable fuse or a circuit breaker (FI switches or earth fault fuses are not recommended).
For installation in accordance with EN 61800-5-1 mm Europe:
\bullet For grounding without interruption, two separate protective leads (${ }^{2}$ cross-section) or one lead ($>10 \mathrm{~mm}^{2}$ cross-section) are required. Each protective lead must meet the requirements according to EN 60204.

3.6.3. Compax3H connections front plate

Communication and signal interfaces

Showcase front plate of the control (number of connectors depends on the extension level of the Compax3)

X3	Motor brake	X20	HEDA in (Option)	
X4	24VDC	X21	HEDA out (Option)	
X10	RS232/RS485 with jumper to the programming interface	X22	Inputs Outputs (Option M10/12)	
X11	Analog/Encoder	X23	Bus (Option)	Connector type depends on the bus system!
X12	Inputs/Outputs	S24	Bus settings	
X13	Motor position feedback	LED1	Device status LEDs	
		LED2	HEDA LEDs	
		LED3	Bus LEDs	

Note on Compax3H: The internal device status LEDs are only connected to the external housing LEDs, if the RS232 jumper at X10 is fitted to the control and the upper dummy cover is fitted.
The RS232 programming interface under the upper dummy cover is only available if the X10 jumper at the controller is fitted.

3.6.4. Plug and pin assignment C 3 H

Overview

Further information on the assignment of the plug mounted at the particular device can be found below!

In detail: The fitting of the different plugs depends on the extension level of Compax3. In part, the assignment depends on the Compax3 option implemented.

Please note
The RS232 programming interface under the upper dummy cover is only available if the X10 jumper at the controller is fitted.
C 3 H 1 xxV 4 uses a ventilator fan which must be externally supplied via separate connections. The ventilator fan is available in two versions for single phase feed: 220/240VAC; 110/120VAC

3.6.5. Motor / Motor brake C3H

Compax3H motor A motor output filter is required for motor cables $>50 \mathrm{~m}$. Please contact us. cable

Shielding connection of the motor cable

The motor cable should be fully shielded and connected to the Compax 3 housing.
The shield of the motor cable must also be connected with the motor housing. The fixing (via plug or screw in the terminal box) depends on the motor type. Motor connection clamps figure (see on page 52)

PIN	Designation	Motor cable lead designation*		
M1/U	U (motor)	$\mathrm{U} / \mathrm{L} 1 / \mathrm{C} / \mathrm{L}+$	1	U 1
M2/V	V (motor)	$\mathrm{V} / \mathrm{L} 2$	2	U 2
M3/W	W (motor)	W / L / D / L-	3	U 3
PE	PE (motor)	$\mathrm{YE} / \mathrm{GN}$	$\mathrm{YE} / \mathrm{GN}$	$\mathrm{YE} / \mathrm{GN}$

* depending on the cable type

Compax3H motor A motor output filter is required for motor cables $>50 \mathrm{~m}$. Please contact us. cable

Shielding connection of the motor cable

The motor cable should be fully shielded and connected to the Compax3 housing. The shield of the motor cable must also be connected with the motor housing. The fixing (via plug or screw in the terminal box) depends on the motor type.

Attention - Please wire the motor holding brake!

Connect the brake only on motors which have a holding brake! Otherwise make no brake connections at all.

Requirements cables for motor holding brake

If a motor holding brake is present, one cable of the motor holding brake must be fed on the device side through the toroidal core ferrite provided as accessory ZBH0x/xx ($63 \Omega @ 1 \mathrm{MHz}$, di=5.1mm), in order to ensure error-free switching on and off of the motor holding brake.

Connection of motor brake X3 figure (see on page 53)

PIN	Designation	Motor cable lead designation*		
1	BR	WH	4	Br 1
2	GND	BK	5	Br 2

Motor holding brake output

Motor holding brake output	Compax3
Voltage range	$21-27 \mathrm{VDC}$
Maximum output current (short circuit proof)	1.6 A

3.6.6. Control voltage 24 VDC C3H

Connection of control voltage 24VDC figure (see on page 53)

Connector X4 Pin	Descripti on	
1	NC	NC
2	GND24V	GND
3	+24 V	24 VDC (power supply)

Control voltage 24VDC Compax3S and Compax3H

Controller type	Compax3
Voltage range	$21-27 \mathrm{VDC}$
Current drain of the device	0.8 A
Total current drain	$0.8 \mathrm{~A}+$ Total load of the digital outputs + current for the motor holding brake
Ripple	0.5 Vpp
Requirement according to safe extra low voltage (SELV)	yes
Short-circuit proof	conditional (internally protected with 3.15AT)

3.6.7. Mains connection Compax3H

Device protection
Avoid permanent switching on and off so that the charging connection is not overloaded. Therefore wait at least 1 minute before switching on the device again.

Connection of mains voltage figure (see on page 52)
Mains connection Compax3HxxxV4 3*400VAC

Device type Compax3	H050V4	H090V4	H125V4	H155V4
Continuous working voltage	Three-phase 3*400VAC 350-528VAC / 50-60Hz			
Receiver current consumption	66 Arms	95 Arms	143Arms	164Arms
Output current	50 Arms	90 Arms	125Arms	155Arms
Maximum input fuse rating per device	80 A	100A	160A	200A
Recommended line protection in accordance with UL	JDDZ Class K5 or H JDRX Class H			

Mains connection Compax3HxxxV4 3*480VAC

Device type Compax3	H050V4	H090V4	H125V4	H155V4
Continuous working voltage	Three-phase 3*480VAC $350-528 V A C ~ / ~ 50-60 H z ~$			
Receiver current consumption	54 Arms	82Arms	118Arms	140Arms
Output current	43Arms	85Arms	110Arms	132Arms
Maximum input fuse rating per device	80 A	100 A	160 A	200A
Recommended line protection in accordance with UL	JDDZ Class K5 or H JDRX Class H			

3.6.8. \quad Braking resistor / supply voltage $\mathbf{C} 3 \mathrm{H}$

The energy generated during braking operation is absorbed by the Compax3 storage capacity.
If this capacity is too small, the braking energy must be drained via a braking resistor.

3.6.8.1 Connect braking resistor C3H

Connection of braking resistor figure (see on page 52)

PIN	Designation
DBR+	+ Braking resistor
DBR-	- Braking resistor

Braking operation of Compax3HxxxV4

Controller type	H 050 V 4	H 090 V 4	H 125 V 4	H 155 V 4		
Capacitance / storable energy	$2600 \mu \mathrm{~F}$	$3150 \mu \mathrm{~F}$	$5000 \mu \mathrm{~F}$	$5000 \mu \mathrm{~F}$		
400V / 480V	$602 / 419 \mathrm{Ws}$	$729 / 507 \mathrm{Ws}$	$1158 / 806 \mathrm{Ws}$	$1158 / 806 \mathrm{Ws}$		
Minimum braking- resistance	24Ω	15Ω	8Ω	8Ω		
Maximum continuous current	11 A	17 A	31 A	31 A		Minimum line cross section:
:---						
Maximum line length:						
Maximum output voltage:						

3.6.8.2 Power supply voltage DC C3H

Connection of power voltage DC -figure (see on page 52)

PIN	Description
DC+	+ DC high voltage supply
DC-	- DC high voltage supply

Warning!
Do not connect any braking resistor on DC+/DC- .

3.6.8.3 Connection of the power voltage of 2 C3H 3AC devices

In order to improve the conditions during brake operation, the DC power voltage of 2 servo axes may be connected.
The capacity as well as the storable energy are increased; furthermore the braking energy of one servo axis may be utilized by a second servo axis, depending on the application.

It is not permitted to connect the power voltage in order to use one brake circuit for two servo axes, as this function cannot be ensured reliably.

Note the following:

Caution! In case of non-compliance with the following instructions, the device may be destroyed!

- You can only connect two similar servo axes (same power supply; same rated currents)
-Connected servo axes must always be fed separately via the AC power supply.
- If the external pre-fuse of one of the servo axes takes action, the second servo axis must also be disconnected automatically.

Please connect as follows:

Servo axis 1 DC+ with servo axis 2 DC+
Servo axis 1 DC- with servo axis 2 DC-

- figure (see on page 52)

3.7 Communication interfaces

In this chapter you can read about:
RS232 / RS485 interface (plug X10)... 59
Communication Compax3M... 60
Profibus connector X23 on Interface I20 .. 62
Profinet connector X23, X24 on Interface I32... 62

3.7.1. RS232 / RS485 interface (plug X10)

Interface selectable by contact functions assignment of $\mathrm{X} 10 / 1$:
X10/1=0V RS232
X10/1=5V RS485

PIN X10	RS232 (Sub D)
1	(Enable RS232) 0V
2	RxD
3	TxD
4	DTR
5	GND
6	DSR
7	RTS
8	CTS
9	+5V
PIN X10	RS485 two wire (Sub D) Pin 1 and 9 jumpered externally
1	Enable RS485 (+5V)
2	res.
3	TxD_RxD/
4	res.
5	GND
6	res.
7	TxD_RxD
8	res.
9	+5V
PIN X10	RS485 four wire (Sub D) Pin 1 and 9 externally jumpered
1	Enable RS485 (+5V)
2	RxD
3	TxD/
4	res.
5	GND
6	res.
7	TxD
8	RxD/
9	+5V

USB - RS232/RS485 converter

The following USB - RS232 converters were tested:

- ATEN UC 232A
- USB GMUS-03 (available under several company names)
- USB / RS485: Moxa Uport 1130
http://www.moxa.com/product/UPort_1130_1130I.htm
- Ethernet/RS232/RS485: NetCom 113 http://www.vscom.de/666.htm
- Exsys Adapter USB to RS232 with FTDI processor (Windows 7)

3.7.2. Communication Compax3M

In this chapter you can read about:
PC - PSUP (Mains module) .. 60
Communication in the axis combination (connector X30, X31)... 60
Adjusting the basic address ... 61

3.7.2.1 PC - PSUP (Mains module)

Connector X3

USB2.0
Connect your PC to the USB sleeve X3 of the mains module via an USB cable (SSK33/03).

3.7.2.2 Communication in the axis combination (connector X30, X31)

The communication in the axis combination is implemented via a SSK28 cable and double RJ45 sleeves on the device top.
Beginning with the PSUP (mains module) the connection is always made from X30 to X31 of the next device. On the first device (X31) and the last device (X30) in the multi-axis combination, a bus termination plug (BUS07/01 (see on page 382)) is required.

	PSUP (Mains module)
X30	out
X31	in
res.	factory use
	Compax3M (axis)
X30	out
X31	in
res.	factory use

3.7.2.3 Adjusting the basic address

On the mains module, the basic address of the device combination is set in steps of 16 with the aid of the first three dip switches.
The mains module contains the set basic address while the axes placed at the right in the combination contain the following addresses.

Switch S1

Address setting

Basic addresses
Switch Value upon ON
116
232
$3 \quad 64$

Settings:

left: OFF
right: ON
Settable value range: $0,16,32,48,64,80,96,112$
Address of the 1 st axis = basic address+1
The addresses of the axis controllers are newly assigned after PowerOn.

Example:

Basic address $=48$; mains module with 6 axis controllers in the combination

1. Axis right: Address $=49$
2. Axis right: Address $=50$
3. Axis right: Address $=54$

3.7.2.4 Setting the axis function

Switch S10

S10 function Function settings for T30 and T40

The value of switch S10 on the axis controller is stored in object 0110.1 C3plus.Switch_DeviceFunction and can be evaluated with the aid of a program. This helps realize a more simple function selection.

3.7.3. \quad Profibus connector X23 on Interface $\mathbf{I 2 0}$

Pin X23	Profibus (Sub D)
1	factory use
2	factory use
3	Data line B
4	RTS
5	GND
6	+5 V
7	factory use
8	Data line A
9	factory use

The assignment corresponds to Profibus standard EN 50170.
Wiring (see on page 386).

3.7.3.1 Adjusting the bus address (Profibus $\mathbf{I 2 0}$)

Address setting

Values:

1: $\mathbf{2}^{0} ; \mathbf{2}: 2^{1} ; 3: 2^{2} ; \ldots 7: 2^{6} ;$ 8: reserved

Settings:

left: OFF
right: ON
(The address is set to 0 in the illustration to the left)
Range of values: 1 ... 127
Address 0 is set internally to address 126.

3.7.3.2 Function of the Bus LEDs (Profibus I20)

Function of the LEDs (under X23)

Green LED (left)	Red LED (right)	Description
alternately flashing	flashing	Dield bus program missing
off	flashing	Bus operation mode (no DATA exchange)
on	off	Bus operation mode (DATA exchange)
on	on	Bus error
on		

3.7.4. Profinet connector X23, X24 on Interface I32

	RJ45 (X23)	RJ45 (X24)
Pin	in	out
1	Tx +	Tx +
2	Tx-	Tx -
3	Rx +	Rx +
4	-	factory use
5	-	factory use
6	Rx-	Rx -
7	-	factory use
8	-	factory use

Wiring with Ethernet Crossover cable Cat5e (from X24 to X23 of the next device without termination); for this, we offer our SSK28 (see on page 340, see on page 379) interface cable.

3.7.4.1 Adjusting the bus address (Profinet I32)

With Profinet, the bus nodes are identified by name. This name is assigned during setup with the aid of a configuration tool (Engineering Tool).
In order to identify each device during this phase, a blinking check can be used. The Profinet node currently worked on in the configuration tool is made to identify itself optically (see LED description // C3 xxx LED flashes green).
With the aid of the address switch, it is possible to allocate a non-ambiguous name to each Compax3 in a network, without using a configuration tool.

Address setting

Settings:

left: OFF
right: ON

Address switch	Device name used
0	The device name used is the name assigned with the aid of the configuration tool. (standard settings)
1	Device name - "compax3-001"
\ldots	
255	Device name - "compax3-255"

3.7.4.2 Function of the Bus LEDs (Profinet I32)

Function of the LEDs

LED2 (left)	LED1 (right)	Description
flashing green	-	Bus operation mode (no DATA exchange)
illuminated green	-	Bus operation mode (DATA exchange)

\hline The blinking check in the

PROFINET-IO-Controller projecting was

activated in order to locate the node optically.\end{array}\right|\)| Communication Error (Data exchange |
| :--- |
| terminated). |

3.8 Signal interfaces

In this chapter you can read about:

3.8.1. Resolver / Feedback (connector X13)

Assignment with feedback F10 (Resolver)

PIN X13	Feedback /X13 High Density /Sub D
	Resolver (F10)
1	factory use
2	factory use
3	GND
4	REF-Resolver+
5	+5 V (for temperature sensor)
6	factory use
7	SIN-
8	SIN+
9	factory use
10	Tmot*
11	COS-
12	COS+
13	factory use
14	factory use
15	REF-Resolver-

Assignment with feedback F11 (SinCos)

PIN X13	Feedback /X13 High Density /Sub D
	SinCos (F11)
1	factory use
2	factory use
3	GND
4	Vcc (+8V with Compax3S \& Compax3H; +10 V with Compax3M
5	res+5 V (for temperature sensor)
6	factory use
7	SIN-
8	SIN +
9	factory use
10	Tmot
11	COS-
12	COS+
13	DATAfbk
14	DATAfbk/
15	GND $(V \mathrm{Vc})$

Assignment with feedback F12 (EnDat)

PIN X13	Feedback /X13 High Density /Sub D		
	EnDat 2.1 \& 2.2 with incremental track (Endat01, Endat02)	EnDat 2.1 fully digital (Endat21) (cable length max. 90 m)	EnDat 2.2 fully digital (Endat02, Endat22) (cable length max. 25 m)
1	Sense -*		factory use
2	Sense +*		factory use
3	factory use		
4	$\mathrm{Vcc}(+5 \mathrm{~V}) *$ max. 350 mA load		
5	+5 V (for temperature sensor)		
6	CLKfbk		
7	SIN- / A- (Encoder)	factory use	
8	SIN+ / A+ (Encoder)	factory use	
9	CLKfbk/		
10	Tmot*		
11	COS- / B- (Encoder)	factory use	
12	COS+ / B+ (Encoder)	factory use	
13	DATAfbk		
14	DATAfbk/		
15	GND (Vcc)		

*X13 Pin10 Tmot may not be connected at the same time as X15 (on Compaxx3M).
Resolver cables (see on page 355) can be found in the accessories chapter of the device description.
SinCos ${ }^{\oplus}$ cables (see on page 356) can be found in the accessories chapter of the device description.
EnDat - cable GBK38 (EnDat2.1) and GBK56 (EnDat2.2) (see on page 339, see on page 356)

Incremental Feedback (optionally with hall sensors)

PIN X13	Feedback option F12 / X13 High Density /Sub D
1	Sense -*
2	Sense +*
3	Hall1 (digital)
4	Vcc (+5V)* max. 350 mA load
5	+5 V (for temperature sensorsand Hall sensors)
6	Hall2 (digital)
7	SIN-, A- (Encoder) or analog Hall sensor
8	SIN+, A+, (Encoder) or analog Hall sensor
9	Hall3 (digital)
10	Tmot
11	COS-, B- (Encoder) or analog Hall sensor
12	COS+, B+ (Encoder) or analog Hall sensor
13	N+
14	N-
15	GND (Vcc)

*X13 Pin10 Tmot may not be connected at the same time as X15 (on Compaxx3M).

Note on F12:

${ }^{*}+5 \mathrm{~V}(\operatorname{Pin} 4)$ is measured and controlled directly at the end of the line via Sense+ and Sense-.
Cable length max.: 100m
Caution!

- Pin 4 and Pin 5 must under no circumstances be connected!
- Plug in or pull out feedback connector only in switched off state (24VDC switched off).

3.8.2. \quad Analogue / encoder (plug X11)

	PIN X11	Reference High Density Sub D		
			Encoders	SSI
	1	+24V (output) max. 70 mA		
	2	Ain1 -; analog input - (14Bits; max. +/-10V)		
	3	D/A monitor channel 1 ($\pm 10 \mathrm{~V}, 8$-bit resolution)		
	4	D/A monitor channel 0 ($\pm 10 \mathrm{~V}, 8$-bit resolution)		
	5	+5 V (output for encoder) max. 150 mA		
	6	- Input: steps RS422 (5V - level)	A (Input / -simulation)	Clock-
	7	+ Input: steps RS422 (5V - level)	A (Input / -simulation)	Clock+
	8	+ Input: direction RS422 (5V - level)	B Input / -simulation)	
	9	Ain0 +: analog input + (14Bits; max. +/-10V)		
	10	Ain1 +: analog input + (14Bits; max. +/-10V)		
	11	Ain0 -: analog input- (14Bits; max. +/-10V)		
	12	- Input: direction RS422 (5V - level)	B/ input / -simulation)	
	13	factory use	N/ input / -simulation)	DATA-
	14	factory use	\mathbf{N} input / -simulation)	DATA+
	15	GND		

Technical Data X11 (see on page 395)

3.8.2.1 Wiring of analog interfaces

Output
Compax3

Compax3

Perform an offset adjustment (see on page 234)!

Structure image of the internal signal processing of the analog inputs, Ain1 (X11/10 and X11/2) has the same wiring!

3.8.2.2 Connections of the encoder interface Compax 3

The input connection is available in triple (for $A \& / A, B \& / B, N \& / N$)

3.8.3. Digital inputs/outputs (plug X12)

$\begin{array}{\|l\|} \hline \text { Pin } \\ \mathrm{X} 12 \\ \hline \end{array}$	Input / Output	High density/Sub D	
1	0	+24 V DC output (max. 400mA)	
2	O0	No error	Only for "fixed assignment"
3	O1	Position / speed / gear synchronization attained (max. 100 mA)	
4	O 2	Power stage without current (max. 100mA)	Functions are available, if "Fixed assignment" was selected for the I/O assignment in the configuration wizard
5	O3	Axis energized with a setpoint of 0 (max. 100 mA)	
6	10="1":	Quit (positive edge) / activate the axis	
	10="0"	Axis disable with delay	
7	11	no Stop	
8	12	JOG +	
9	13	JOG -	
10	14	Reg input	
11	1	24 V input for the digital outputs Pins 2 to 5	
12	15	Limit switch 1	
13	16	Limit switch 2	
14	17	Machine zero initiator	
15	0	GND24V	

All inputs and outputs have 24 V level.
Maximum capacitive loading of the outputs: 30 nF (max. 2 Compax 3 inputs can be connected)
Input-/Output extension

Optimization window display

The display of the digital inputs in the optimization window of the C3 ServoManager does not correspond to the physical status ($24 \mathrm{Volt}=$ on, $0 \mathrm{Volt}=\mathrm{off}$) but to the logic status: if the function of an input or output is inverted (e.g. limit switch, negatively switching), the corresponding display (LED symbol in the optimization window) is OFF with 24 Volts at the input and ON with 0 Volts at the input.
In operation via Profibusthe inputs $10 \ldots \mathrm{I} 3$ as well as the outputs $\mathrm{O} 0 \ldots \mathrm{O} 3$ can be freely assigned as an option.
Configurable via the C3 ServoManager (configuration: Operating mode / I/O assignment)

3.8.3.1 Connection of the digital Outputs/Inputs

Wiring of digital outputs

The circuit example is valid for all digital outputs! The outputs are short circuit proof; a short circuit generates an error.

Status of digital inputs
sps/PLc Compax 3

The circuit example is valid for all digital inputs! Signal level:
->9.15V = "1" (38.2\% of the control voltage applied)
$\bullet<8.05 \mathrm{~V}=$ " 0 " (33.5\% of the control voltage applied)

F1: Delayed action fuse
F2: Quick action electronic fuse; can be reset by switching the 24 VDC supply off and on again.

3.8.3.2 Logic proximity switch types

Type	1	2	3	4
Transistor switch	PNP	PNP	NPN	NPN
Logic	(N.O.) "active high"	$\begin{array}{\|l\|} \hline \text { (N.C) } \\ \text { "active low" } \end{array}$	(N.O.) "active low"	(N.C) "active high"
Description of logic	Compax3 sees a logical "1" upon activation	Compax3 sees a logical "0" upon activation"	Compax3 sees a logical "0" upon activation"	Compax3 sees a logical "1" upon activation
Fail safe logic	no	yes	Only conditional ${ }^{1)}$	no
Instruction for pull up resistor in the initiator	-	-	$\begin{aligned} & \mathrm{Rmin}=3 \mathrm{k} 3 \\ & \mathrm{Rmax}=10 \mathrm{k} \end{aligned}$	$\begin{aligned} & \mathrm{Rmin}=3 \mathrm{k} 3 \\ & \mathrm{Rmax}=10 \mathrm{k} \end{aligned}$
Connections				x12/1 (+24 VDC) X12/X (Input) X12/15 (GND)

[^1]
3.9 Mounting and dimensions

In this chapter you can read about:
Mounting and dimensions Compax3S...

3.9.1 \quad Mounting and dimensions Compax3S

3.9.1.1 Mounting and dimensions Compax3S0xxV2

Mounting:

3 socket head screws M5

Stated in mm

Please respect an appropriate mounting gap in order to ensure sufficient convection:

- At the side: 15 mm
- At the top and below: at least 100 mm

3.9.1.2 Mounting and dimensions Compax3S100V2 and S0xxV4

Mounting:

3 socket head screws M5

Stated in mm
Please respect an appropriate mounting gap in order to ensure sufficient convection:

- At the side: 15 mm
- At the top and below: at least 100 mm

3.9.1.3 Mounting and dimensions Compax3S150V2 and S150V4

Mounting:

4 socket head screws M5

Please respect an appropriate mounting gap in order to ensure sufficient convection:

- At the side: 15 mm
- At the top and below: at least 100 mm

3.9.1.4 Mounting and dimensions Compax3S300V4

Mounting:

4 socket head screws M5

Please respect an appropriate mounting gap in order to ensure sufficient convection:

- At the side: 15 mm
- At the top and below: at least 100 mm

Compax3S300V4 is force-ventilated via a fan integrated into the heat dissipator!

3.9.2. Mounting and dimensions PSUP/C3M

Ventilation: During operation, the device radiates heat (power loss). Please provide for a sufficient mounting distance below and above the device in order to ensure free circulation of the cooling air. Please do also respect the recommended distances of other devices. Make sure that the mounting plate is not exhibited to other temperature influences than that of the devices mounted on this very plate. The devices must be mounted vertically on a level surface. Make sure that all devices are sufficiently fixed.

3.9.2.1 Mounting and dimensions PSUP10/C3M050D6, C3M100D6, C3M150D6

The devices are force-ventilated via a ventilator fan fixed to the lower part of the heat dissipator!

Mounting spacing: At the top and below: at least 100 mm
Information on
PSUP10D6/C3M050D6, C3M100D6, C3M150D6

Mounting:

2 socket head screws M5

Tolerances: DIN ISO 2768-f

3.9.2.2 Mounting and dimensions PSUP20/PSUP30/C3M300D6

PSUP20/PSUP30/C3M300D6

Tolerances: DIN ISO 2768-f

3.9.2.3 With upper mounting, the housing design may be different

Mounting:

3 socket head screws M5

3.9.3. Mounting and dimensions C 3 H

The devices must be mounted vertically on a level surface in the control cabinet.
Dimensions:

(1): Electronics
(2): Head dissipator

	H	H1	D	W	W1
C3H050V4	453 mm	440 mm	245 mm	252 mm	150 mm
C3H090V4	668.6 mm	630 mm	312 mm	257 mm	150 mm
C3H1xxV4	720 mm	700 mm	355 mm	257 mm	150 mm

Mounting:4 screws M6

Ventilation: During operation, the device radiates heat (power loss). Please provide for a sufficient mounting distance below and above the device in order to ensure free circulation of the cooling air. Please do also respect the recommended distances of other devices. Make sure that the mounting plate is not exhibited to other temperature influences than that of the devices mounted on this very plate. If two or more devices are combined, the mounting distances are added.
3.9.3.1 Mounting distances, air currents Compax3H050V4

in mm

	I	J	K	L	M
C3H05OV4	15	5	25	70	70

3.9.3.2 Mounting distances, air currents Compax3H090V4

in mm

	I	J	K	L	M
C3H090V4	0	0	25	70	70

in mm

	I	J	K	L	M
C3H1xxV4	0	0	25	70	70

3.10 Safety function - STO (=safe torque off)

In this chapter you can read about:

General Description.. 78
STO (= safe torque off) with Compax3S .. 81
STO (= safe torque off) with Compax3m (Option S1).. 91

3.10.1. General Description

Intended use.. 79
Advantages of using the "safe torque off" safety function.. 79
Devices with the STO (=safe torque off) safety function... 80

The present documentation assumes a basic knowledge of our drive controllers as well as an understanding of safety-oriented machine design. References to standards and other regulations are only rudimentarily expressed. For complementary information, we recommend the respective technical literature.

3.10.1.1 Important terms and explanations

Term	Explanation
Safety category 3 in accordance with EN ISO 13849-1	Definition according to standard: Circuit with safety function against individual errors. Some, but not all errors are detected. An accumulation of errors may lead to a loss of the safety function. The remaining risk is accepted. The determination of the safety category required for an application (risk analysis) lies within the responsibility of the machine manufacturer. It can take place according to the method described in EN ISO 13849-1, appendix A.
"Safe torque off"	With the "safe torque off", the energy supply of the drive is safely interrupted according to EN 1037, paragraph 4.1. The drive is not to be able to produce a torque and thus dangerous movements (see EN 1037, paragraph 5.3.1.3). The standstill position must not be monitored. If an external force effect, e.g. a drop of hanging loads, is possible with the "safe torque off", additional measures to safely prevent those must be provided (e.g. additional mechanical brakes). The following measures are appropriate for a "safe torque off": Contactor between mains and drive system (mains contactor) Contactor between power section and motor (motor contactor)
Safe blocking of the power semiconductor control (start inhibitor)	

Stop categories according to EN60204-1 (9.2.2)

Stop category	Safety function	Requirement	System behavior	Remark
0	Safe torque off (STO)	Stopping by immediately switching off the energy supply of the machine drive elements	Uncontrolled stop	Uncontrolled stop is the stopping of a machine movement by switching off the energy of the machine drive elements. Available brakes and/or other mechanical stopping components are applied.
1	Safe stop 1 (SS1)	Stop where the energy of the machine drive elements is maintained in order to reach a stop. The energy supply is only interrupted, if the standstill is attained.	Controlled stop	Controlled stop is the stopping of a machine movement by for instance resetting the electrical command signal to zero, as soon as the stop signal has been detected by the controller, the electrical energy for the machine drive elements remains however during the stopping procedure.
2	Safe stop 2 (SS2)	Stop where the energy to the machine drive elements is maintained.	Controlled stop	This category is not covered.

3.10.1.2 Intended use

The Compax3 drive controller supports the "safe torque off" (STO) safety function, with protection against unexpected startup according to the requirements of EN ISO 13849-1, category 3 to PLe and EN 1037.
Together with the external safety control device, the "safe stop 1" (SS1) safety function according to the requirements of EN ISO 13849-1 category 3 can be used. As the function is however realized with the aid of an individually settable time delay on the safety switching device, you must take into account that, due to an error in the drive system during the active braking phase, the axis trundles to a stop unguided or may even accelerate actively in the worst case until the expiry of the preset switch-off time.

According to a risk evaluation which must be carried out according to the machine standard 98/37/EG and 2006/42/EG or EN ISO 12100, EN ISO 13849-1 and EN ISO 14121-1, the machine manufacturer must project the safety system for the entire machine including all integrated components. This does also include the electrical drives.

Qualified personnel

Projecting, installation and setup require a detailed understanding of this description.
Standards and accident prevention regulation associated with the application must be known and respected as well as risks, protective and emergency measures.

3.10.1.3 Advantages of using the "safe torque off" safety function.

Safety category 3 in accordance with EN ISO 13849-1

Requirements performance feature	Use of the safe torque off function	Conventional solution: Use of external switching elements		
Reduced switching overhead	Simple wiring, certified application examples Grouping of drive controllers on a mains contactor is possible.	Two safety-oriented power contactors in series connection are required.		
Use in the production process High operating cycles, high reliability, low wear	Extremely high operating cycles thanks to almost wear-free technology (low-voltage relay and electronic switch). The "safe torque off" status is attained due to the use of wear-free electronic switches (IGBTs).	This performance feature cannot be reached with conventional technology.		
Use in the production process	Drive controller remains performance- and control-oriented in connected state. No significant waiting times due to restart.	When using power contactors in the supply, a long waiting time for the energy discharge of the DC link circuit is required. When using two power contactors on the motor side, the reaction times may increase, you must however take into consideration other disadvantages: a) Securing that switching takes only place in		
restart			\quad	powerless state (Direct current! Constant electric arcs
:---				
must be prevented).				
b) Increased overhead for EMC conform wiring.				

1) According to the preface of the German version of the EN 60204-1/11.98, electronic equipment for emergency-stop devices are also permitted, if they comply with the safety categories as described in EN ISO 13849-1.

3.10.1.4 Devices with the STO (=safe torque off) safety function

The STO (Safe torque off) safety function is implemented in the following devices:
Compax3 technology function

- I10T10, I11T11, I12T11,
- I10T20, I20T20, I32T20
-I11T30, I20T30, I21T30, I22T30, I30T30, I31T30, I32T30, I11T40, I20T40, I21T40, I22T40, I30T40, I31T40, I32T40 I11T70, I20T70, I32T70
- I20T11, I21T11, I22T11, I30T11, I31T11, I32T11
-C10T11, C10T30, C10T40,
C13T11, C13T30, C13T40,
C20T11, C20T30, C20T40
with the device power / series
S025V2, S063V2, S100V2, S150V2, S015V4, S038V4, S075V4, S150V4, S300V4
M050D6, M100D6, M150D6, M300D6,
and is only valid with the stated conditions of utilization.

3.10.2. STO (= safe torque off) with Compax3S

In this chapter you can read about:

STO Principle (= Safe Torque Off) with Compax3S 81
Conditions of utilization STO (=safe torque off) Safety function 83
Notes on the STO function. 83
STO application example (= safe torque off) 84
Technical Characteristics STO Compax3S 90

3.10.2.1 STO Principle (= Safe Torque Off) with Compax3S

To ensure safe protection against a motor starting up unexpectedly, the flow of current to the motor and thus to the power output stage must be prevented. This is accomplished for Compax3S with two measures independent of each other (Channel 1 and 2), without disconnecting the drive from the power supply:

Channel 1:

Activation of the power output stage can be disabled in the Compax3 controller by means of a digital input or with a fieldbus interface (depending on the Compax3 device type) (deactivation of the energize input).

Channel 2:

The power supply for optocouplers and drivers of power output stage signals is disconnected by a safety relay activated by the enable input "ENAin"(X4/3) and equipped with force-directed contacts. This prevents control signals from being transferred to the power output stage.

The STO (= Safe Torque Off) safety function in accordance with EN ISO 13849-1: 2008 PLd or PLe, Kat. 3 is only possible when using both channels via an external safety switching device
Please note the application examples!
Circuit diagram illustrating working principle:

Channel 1

Notes

- In normal operation of Compax3, 24VDC of power is supplied to the "Enable" input (X4/3). The control of the drive takes then place via the digital inputs/outputs or via the fieldbus.

STO delay times

The deceleration time t deceleration depends on the configuration of the Compax3. It must be configured so that oscillation free bringing to standstill is possible, depending on the mechanical load. The delay time t delay_time must be set in the safety control device UE410 so that t delay_time > \bar{t} deceleration. Only after the elapsing of the relay delay $t_{\text {_ delay_relay }}^{-}$ch2, the STO function is completely activated. The relay delay time t_deay_relay_ch2 is 15 ms .

3.10.2.2 Conditions of utilization STO (=safe torque off) Safety function

- STO can only be implemented in Compax3 with a corresponding safety switching device considering the application examples.
- Safety functions must be tested 100%.
- The Compax3S and the safety switching device used must be mounted in a protected way (IP54 mounting cabinet).
- Only qualified staff members are permitted to install the STO (=safe torque off) function and place it in service.
For all applications in which the first channel of the "Safe torque off" is implemented by means of a PLC, care must be taken that the part of the program that is responsible for current flowing to or not flowing to the drive is programmed with the greatest possible care. The Safe Torque off application example of Compax3 with fieldbus should be considered.
The designer and operator responsible for the system and machine must refer programmers who are involved to these safety-related points.
- Terminal X4/2 (GND 24 V and at the same time the reference point for the safety relay bobbin) must be connected with the PE protective lead. This is the only way to ensure protection against incorrect operation through earth faults (EN60204-1 Section 9.4.3)!
All conditions necessary for CE-conform operation must be observed.
-When using an external safety switching device with adjustable delay time, (as illustrated in the STO application example), it must be ensured that the delay time cannot be adjusted by persons not authorized to do so (for example by applying a lead seal). With the UE410-MU3T5 safety switching device, this is not necessary, if the anti manipulation measures are respected.
- The adjustable delay time on the safety switching device must be set to a value greater than the duration of the braking ramp controlled by the Compax3 with maximum load and maximum speed.
If the setting range for the specified Emergency power-off module is not sufficient, the Emergency power-off module must be replaced by another equivalent module.
- All safety-related external leads (for example the control lead for the safety relay and feedback contact) must absolutely be laid so they are protected, for example in a cable duct. Short circuits and crossed wires must be reliably excluded!
- If there are external forces operating on the drive axes, additional measures are required (for example additional brakes). Please note in particular the effects of gravity on suspended loads!

3.10.2.3 Notes on the STO function

- It should be noted in connection with the STO (= safe torque off) application example illustrated here that after the Emergency stop switch has been activated, no galvanic isolation in accordance with EN 60204-1 Section 5.5 is guaranteed. This means that the entire system must be disconnected from the mains power supply with an additional main switch or mains power contactor for repair jobs. Please note in this regard that even after the power is disconnected, dangerous electrical voltages may still be present in the Compax3 drive for about 10 minutes.
During the active braking phase of Stop category 1 (controlled bringing to a stop with safely monitored delay time according to EN60204-1) or safe stop 1, faulty function must be expected. If an error in the drive system or mains failure occurs during the active braking phase, the axis may trundle to a stop unguided or might even actively accelerate until the expiry of the defined switch-off time.
- Please note that the control of the drive via Energize (Energize input or fieldbus interface) is not executed in all operating conditions. The following restrictions apply when the set-up window of the C3 ServoManager is used:
- If the setup mode is switched on, the fieldbus interface and the energize input are blocked
- the energize input can be ignored if the input simulator is activated (depending on the settings).

Note on error switch-off

| If the "safe torque off" function of Compax3 is required or used for |
| :--- | :--- |
| a machine or system, the two errors: |
| "Motor_Stalled" (Motor stalled) and |
| "Tracking" (following error) |
| are not to be switched off(see on page 134, see on page 149). |

3.10.2.4 STO application example (= safe torque off)

The application example described here corresponds to Stop Category 1 as defined by EN60204-1.
Together with the external safety switching device, the "Safe Stop 1"(SS1) safety function can also be implemented.

A Stop Category 0 in accordance with EN 60204-1 can be implemented, for example by setting the delay time on the Emergency power-off module as well as on the Compax3 (delay time for "switch to currentless") to 0 . The Compax3M will then be turned off immediately in 2 channels and will therefore not be able to generate any more torque. Please take into consideration that the motor will not brake and a coasting down of the motor may result in hazards. If this is the case, the STO function in stop category 0 is not permitted.

Circuit layout overview

- 2 Compax3 devices (the circuit example is also valid for one or multiple devices, if it is adapted accordingly)
- 1 Emergency Power-off module (UE410-MU3T5 manufactured by Sick) With adjustable delayed deactivation of the Compax3 enable input ENAin. The time must be set so that all axes are at a standstill before the Compax3 controllers are deactivated.
- The operating instructions of the UE410-MU3T5 safety switching device must be observed.
- 1 emergency power-off switch
- Hazardous area accessible via a safety door with safety door switch S6.
- 1 pushbutton per Compax3
\bullet For the Energize input on Compax3, a debouncing time $>3 \mathrm{~ms}$ must be configured
- 1 relay per Compax3

The relay must be dimensioned so that it has a lifetime of at least 20 years, taking the cycle time into consideration. If this is not the case, the relays must be exchanged for new relays after expiration of the lifetime.

Circuit:

* Energize / Ackn = I0 (X12/6)

Instead of the safety switching device manufactured by Sick mentioned above, you may use other safety switching devices.
The safety switching device must however provide the following features:

- 1 normally open contact is required for switching off channel 1 (as an alternative, a safe semiconductor output is possible)
- 1 off-delayed normally open safety contact is required for switching off channel 2 (as an alternative, a safe semiconductor output with adjustable delay time for the high_to_low_edge is possible).
- 1 one-channel monitoring circuit where the feedback contacts of channels 1 and 2 can be integrated for simultaneous monitoring, is required.
At the same time it must be possible to integrate a one-channel start button for activation of the safety switching device into the circuit.
A new start may only be successful, if it is ensured, that channels 1 and 2 are switched off.
- 1 two-channel connection for emergency power off and/or safety door contacts with cross fault monitoring is required.
- The safety switching device must feature performance PL e. The I/Os must at least correspond to category 3.

Switches and buttons:

1 N/C $(S 4, S 5) ~ p e r ~$ device:	Guide Device to a currentless state
S6:	closed when the safety door is closed
S2:	Activate safety switching device

Caution! Module UET410-MU3T5 modulates regularly test switching signals (OSSD) on outputs Q3 and Q4.
We recommend to use a filter > 3 ms for signal Q3 in the PLC.
If different safety switching devices are used, please make sure that the pulse width of the test pulses is not wider than $700 \mu \mathrm{~s}$. The safety switching device used can only send test pulses (active low) with high level.

Safe torque off description

In this chapter you can read about:
Basic functions: ... 89
Access to the hazardous area .. 90

In this chapter you can read about:
Safe torque off basic function ... 86
Access to the hazardous area .. 87

Safe torque off basic function

Compax3 devices disabled by:

Channel 1: Energize input to "0" by safety switching device output Q3
Channel 2: Enable input ENAin to "0" by safety switching device output Q4

Activate safety switching device

Before the Compax3 can be placed into operation, the safety switching device must be activated by a pulse to Input S2.
Prerequisite:
-S2 closed

- Safety door closed
-K1 and K2 energized
- K1: receives current if Compax3 Device 1 is currentless (output = "1" in currentless state) $=$ Channel 1 feedback
- K2: receives current if Compax3 device 2 is currentless (output = " 1 " in the currentless state) $=$ channel 1 feedback
- The feedback contact of all Compax3 devices must be closed (channel 2).

Energize Compax3 (Motor and power output stage)

- With the safety switching device, the Compax3 devices are enabled via the energize input and the Enable input ENAin. (If an error is still present in the Compax3, it must be acknowledged - the ackn function depends on the Compax3 device type)
- The motors are energized with current.

Summary: Compax3 is only energized if the feedback functions are capable of functioning via two channels.

Access to the hazardous area

Actuate emergency power-off switch

Due to the interruption on two channels at the emergency power-off switch, the safety switching device is deactivated - output Q3 is immediately "0".
Channel 1: Via the Energize input, the Compax3 devices receive the command to guide the drive to a currentless state (using the ramp configured in the C3
ServoManager for "drive disable").
Channel 1 feedback 1: The "Controller Feedback" Compax3 outputs supply current to Relays K1 and K2.
Channel 2: After the delay time set in the safety switching device, (this time must be set so that all drives are stopped after it has elapsed) the output $\mathrm{Q} 4=$ " 0 ", which in turn deactivates the Enable inputs ENAin of the Compax3 devices.
Channel 2 feedback: Via the series circuit of all feedback contacts, the "Safe Torque-off" status (all Compax3 devices without current) is reported.
Only if the drives are all at a standstill, the safety door may be opened and the hazardous area may be accessed.
If the safety door is opened during operation and the emergency-power-off switch was not triggered before, the Compax3 drives will also trigger the stop ramp.

Caution! The drives may still move.

If danger to life and limb of a person entering cannot be excluded, the machine must be protected by additional measures (e.g. a safety door locking).

Safe torque off layout with bus

- 2 Compax3 devices (the circuit example is also valid for one or multiple devices, if it is adapted accordingly)
- 1 Emergency Power-off module (UE410-MU3T5 manufactured by Sick) With adjustable delayed deactivation of the Compax3 enable input ENAin. The time must be set so that all axes are at a standstill before the Compax3 controllers are deactivated.
-The operating instructions of the UE410-MU3T5 safety switching device must be observed.
- 1 emergency power-off switch
- Hazardous area accessible via a safety door with safety door switch S6.
- 1 pushbutton per Compax3

Circuit:

CW: Control word (see on page 299)
SW: Status word (see on page 300)

Instead of the safety switching device manufactured by Sick mentioned above, you may use other safety switching devices.
The safety switching device must however provide the following features:

- 1 normally open contact is required for switching off channel 1 (as an alternative, a safe semiconductor output is possible)
- 1 off-delayed normally open safety contact is required for switching off channel 2 (as an alternative, a safe semiconductor output with adjustable delay time for the high_to_low_edge is possible).
- 1 one-channel monitoring circuit where the feedback contacts of channels 1 and 2 can be integrated for simultaneous monitoring, is required.
At the same time it must be possible to integrate a one-channel start button for activation of the safety switching device into the circuit.
A new start may only be successful, if it is ensured, that channels 1 and 2 are switched off.
- 1 two-channel connection for emergency power off and/or safety door contacts with cross fault monitoring is required.
- The safety switching device must feature performance PL e. The I/Os must at least correspond to category 3.
Switches and buttons:

1 N/C (S4, S5) per device:	Guide Device to a currentless state
S6:	closed when the safety door is closed
S2:	Activate safety switching device

Caution! Module UET410-MU3T5 modulates regularly test switching signals (OSSD) on outputs Q3 and Q4.
We recommend to use a filter $>3 \mathrm{~ms}$ for signal Q3 in the PLC.
If different safety switching devices are used, please make sure that the pulse width of the test pulses is not wider than $700 \mu \mathrm{~s}$. The safety switching device used can only send test pulses (active low) with high level.

Safe torque off description

Basic functions:

Compax3 devices disabled by:

Channel 1: Energize deactivated by PLC and safety switching device output Q3. Channel 2: Enable input to "0" by safety switching device output Q4.

Activate safety switching device

Before the Compax3 can be placed into operation, the safety switching device must be activated by a pulse to Input S2.
Prerequisite:
-S2 closed

- Safety door closed: only then the safety door monitor will enable the safety switching device on two channels
- Feedback activated via PLC (Controller feedback channel 1: motor not energized)
- The feedback contact of all Compax3 devices must be closed (channel 2).

Energize Compax 3 (Motor and power output stage)

- The PLC enables the Compax3 devices by means of the control word and the safety switching device enables the Compax3 devices by means of the Enable input. (If an error is still present on the Compax3, it must be acknowledged before)
- The motors are energized with current.

Summary: Compax3 is only energized if the feedback functions are capable of functioning via two channels.

Access to the hazardous area

Actuate emergency power-off switch

Due to the interruption on two channels at the emergency stop switch, the safety switching device is deactivated - output Q is immediately " 0 ".
The PLC evaluates this and responds as follows:
Channel 1: The Compax3 devices receive via the control word the command to guide the drive to currentless state (vi the ramp for "deenergizing" configured in the C3 ServoManager).
Channel 1 feedback: The Compax3 feedback via the status word is evaluated by the PLC and passed on to the safety switching device via the Compax3 Feedback (X4.4 and X4.5).
Channel 2: After the delay time set in the safety switching device, (this time must be set so that all drives are stopped after it has elapsed) the output Q4 = " 0 ", which in turn deactivates the Enable inputs ENAin of the Compax3 devices.
Channel 2 feedback: Via the series circuit of all feedback contacts, the "Safe Torque-off" status (all Compax3 devices without current) is reported.
Only if the drives are all at a standstill, the safety door may be opened and the hazardous area may be accessed.

If the safety door is opened during operation and the emergency-power-off switch was not triggered before, the Compax3 drives will also trigger the stop ramp.

Caution! The drives may still move.

If danger to life and limb of a person entering cannot be excluded, the machine must be protected by additional measures (e.g. a safety door locking).

3.10.2.5 Technical Characteristics STO Compax3S

Safety technology Compax3S

Safe torque-off in accordance with EN	
ISO 13849: 2008, Category 3, PL d/e	
Certified.	For implementation of the "protection against unexpected start-up" function Test mark IFA 1003004
	described in EN1037. Please note the circuitry examples (see on page 78).

Compax3S STO (=safe torque off)

Nominal voltage of the inputs	24 V
Required isolation of the 24V control voltage	Grounded protective extra low voltage, PELV
Protection of the STO control voltage	1 A
Grouping of safety level	<500 000 STO cycles per year are assumed. -STO switch-off via internal safety relay \& digital input: PL e, PFHd=2.98E-8
\bullet STO switch-off via internal safety relay \& fieldbus:	
PL d, PFHd=1.51E-7 (is applicable for a MTTFd=15	
years of the external PLC)	
-Lifetime: 20 Years	

3.10.3. STO (= safe torque off) with Compax3m (Option S1)

In this chapter you can read about:
Safety switching circuits 91
Safety notes for the STO function in the Compax3M 92
Conditions of utilization for the STO function with Compax3M 92
STO delay times 93
Compax3M STO application description 94
STO function test 97
Technical details of the Compax3M S1 option 99

3.10.3.1 Safety switching circuits

The current flow in the motor windings is controlled by a power semiconductor bridge (6-fold IGBT). A processor circuit and PWM circuit will switch the IGBT with rotary field orientation. Between control logic and power module, optocouplers are used for potential separation.
On the Compax3M drive controller with S1 option, the X14 (STO) connector can be found on the front plate. 2 optocouplers are controlled on two channels via the STO1/ and STO2/ terminals of this connector. When requesting the STO via an external safety switching device, the two auxiliary voltage supply channels of the power stage control circuits are switched off on two channels. Therefore the power transistors (IGBTs) for the motor current can not longer be switched on. The hardware monitor detects the failure of the optocoupler circuit of a channel by always checking both channels for similarity. If the hardware monitor detects a discrepancy for a defined time (ax. 20s), the error will be stored in the hardware memory. The processor signals this error externally via the $0 x 5493$ error code. An activation of the coupler supply can then only take place via a hardware reset (switching off and on again) of the device.

[^2]
3.10.3.2 Safety notes for the STO function in the Compax3M

- It should be noted in connection with the STO application examples illustrated here that after the Emergency stop switch has been activated, no galvanic isolation in accordance with EN 60204-1 Section 5.5 is guaranteed. This means that the entire system must be disconnected from the mains power supply with an additional main switch or mains power contactor for repair jobs. Please note in this regard that even after the power is disconnected, dangerous electrical voltages may still be present in the Compax3 drive for about 10 minutes.
- During the active braking phase of Stop category 1 (controlled bringing to a stop with safely monitored delay time according to EN60204-1) or safe stop 1, faulty function must be expected. If an error in the drive system occurs during the active braking phase, the axis may trundle to an unguided stop or might even actively accelerate until the expiry of the defined switch-off time.
- For synchronous motors operated in the field weakening range, the operation of the STO function may lead to over speed and destructive, life-threatening over voltages as well as explosions in the servo drive. Therefore, NEVER use the STO function with synchronous drives in the field-weakening range.
- It is important to note that if the drive is being activated (Energize) by the USB / RS485 interface, it may not be possible to execute switch-off by a controlled braking ramp. For example, this is true when the set-up window of the C3 ServoManager is used. If set-up mode is turned on or with the input simulator, the digital I/O interface and fieldbus interface are automatically disabled.

Maintenance

When using the S1 option, a protocol describing the orderly working of the safety function must be made upon the setup and in defined maintenance intervals (see protocol proposal).

3.10.3.3 Conditions of utilization for the STO function with Compax3M

- The STO safety function must be tested and protocoled as described (see on page 97). The safety function must be requested at least once a week. In safety door applications, the weekly testing interval must not be observed, as you can assume that the safety doors will be opened several times during the operation of the machine.
-The Compax3M with integrated STO safety function as well as the utilized safety switching devices must be mounted protected (IP54 control cabinet).
- Only qualified staff members are permitted to install the STO function and place it in service.
- The X9/2 (GND24V) terminal on the PSUPxx mains module must be connected to the PE protective lead. This is the only way to ensure protection against incorrect operation through earth faults (EN60204-1 Section 9.4.3)!
-When using an external safety switching device with adjustable delay time, (as illustrated in the STO application example), it must be ensured that the delay time cannot be adjusted by persons not authorized to do so (for example by applying a lead seal). With the UE410-MU3T5 safety switching device, this is not necessary, if the anti manipulation measures are respected.
- The adjustable delay time on the safety switching device must be set to a value greater than the duration of the braking ramp controlled by the Compax3 with maximum load and maximum speed.
- All conditions necessary for CE-conform operation must be observed.
- If there are external forces operating on the drive axes, additional measures are required (for example additional brakes). Please note in particular the effects of gravity on suspended loads! This must be respected above all for vertical axes without self-locking mechanical devices or weight balance.
-When using synchronous motors, a short movement over a small angle is possible, if two errors occur simultaneously in the power section. This depends on the number of pole pairs of the motor (rotary types: 2 poles $=180^{\circ}, 4$ poles $=$ $90^{\circ}, 6$ poles $=60^{\circ}, 8$ poles $=45^{\circ}$, Linear motors: 180° electrically).

3.10.3.5 Compax3M STO application description

In this chapter you can read about:
STO function with safety switching device via Compax3M inputs..................................... 94
STO function description
Emergency stop and protective door monitoring without external safety switching device. 96

STO function with safety switching device via Compax3M inputs

Recommendation Energize $=10$ (X12/6) (debounceable digital input)
The acknowledgement S2 via the safety control UE410-MU3T5 is only necessary, if after the disabling of the STO function, a danger to any person or to the machine could arise by automatic starting. During the Configuration des Compax3M (see on page 129)you must see to a debouncing time $>3 \mathrm{~ms}$ being configured for the Energize input.
The operating instructions of the UE410-MU3T5 safety control must be observed. The Compax3M devices and the UE410-MU3T5 safety control must be mounted in the same control cabinet.

1 N.C. (S3, S4) per device	Guide Device to a currentless state
S1	closed when the safety door is closed
S2	Activate safety switching device

STO function description

When opening the protective door or after actuating the emergency stop switch, the signal of the "energize" input of the Compax3M drive modules is interrupted via the Q3 output on the UE410-MU3T5 safety control. This triggers an immediate braking ramp on the drives. Then after the delay time set on the UE410-MU4T5 safety control, the STO function in the drives is triggered via the Q4 output. The servo drives are then in safe torqueless state. The delay time must be set on the safety control so that the braking ramp in the drives has run off and the drives are at standstill when the delay time has elapsed.

The described application example corresponds to the stop category 1 according to EN 60204-1. Together with the external safety switching device, the "Safe Stop 1" safety function can also be implemented.
A Stop Category 0 in accordance with EN 60204-1 can be implemented, for example by setting the delay time on the safety switching device to 0 . The Compax3M will then be turned off immediately in 2 channels and will not be able to generate any more torque. Please take into consideration that the motor will not brake and a coasting down of the motor may result in hazards. If this is the case, the STO function in stop category 0 is not permitted.
Depending on the interface Ixx or technology function Txx of the Compax3M, the "energize" input can be a digital input or for instance a defined bit of a fieldbus control word (see the overview table below).
In the I10T10, I11T11, I12T11, I2xT11 and I3xT11 devices, the ackn input is assigned fixed.

Interface/Technology	"Energize"	Ackn
I10T10	Digital input I0 (X12/6)	I2 (X12/8)
I11T11	Digital input I2 (X12/8) (Energize \& Ackn identical)	
I12T11	Digital input I0 (X12/6) (Energize \& Ackn identical)	
I2xT11, I3xT11	Applications with fieldbusses	
I2xT11, I3xT11	Debounced digital input defined in the IEC program, which leads to the enable input of the MCpower function module	
I11T30 and I11T40	Bit defined in the IEC program (debounced digital input or via fieldbus) which is linked to the enable input of the MCpower function module	
I2xT30, I2xT40, I3xT30 and I3xT40	Debounced digital input defined in the IEC program, which leads to the enable inputs of several MCpower function modules for different axes. The information is passed on to the individual axes via the CANbus.	
C1xT30 and C1xT40 C20T30 and C20T40		

The acknowledement via the safety control UE410-MU3T5 is only necessary, if after the disabling of the STO function, a danger to any person or to the machine could arise due to automatic startup..

Emergency stop and protective door monitoring without external safety switching device.

With Compax3M, a 2-channel protective door monitoring switch or a 2 channel emergency power-off switch can be directly connected. The figure below visualizes an application with 2 channel protective door monitoring switch.
The Compax3M drive modules with PSUPxx mains rectifier must be located in a protected area (IP54 control cabinet). Outside this protected area, the line guiding to the external switches must be separated channelwise or must be especially protected (blinded).
It is also permitted to use one acknowledgement switch for both servo drives at a time. In both cases the acknowledgement does only correspond to category B, therefore this acknowledgement should not be used if there is any possibility of stepping in the dangerous area. In this case, an external acknowledgement device must be used.

3.10.3.6 STO function test

The STO function must be checked in the event of:

- Commissioning
- After each exchange of any equipment within the system
- After each intervention into the system wiring
- In defined maintenance intervals (at least once per week) and after a longer standstill of the machine
If the STO function was triggered by opening a protective door and if this door is opened several times a week, the weekly testing interval is not required.
The check must be made by qualified personnel adhering to all necessary safety precautions.

The following testing steps must be performed:

STO Test	Action, activity	Expected reaction and effect
1	24 V DC voltage on terminal X14.1 and X14.3	
2	Switch on power and 24V supply voltage	No error must be present
3	Configuring the device	No error must be present
4	Testing active STO on terminal X14.1 and X14.3: Remove 24V DC on terminal X14.1 and X14.3 at the same time	Error message 0x5492 must be present 1$)$
5	Re-apply 24V DC voltage on terminals X14.1 and X14.3 and then acknowledge error	No error must be present
6	Then switch off and on again 24V voltage supply	No error must be present

1) In order to automate the test, it is sufficient here to monitor the general error output with an external logic.
A manual check of the torqueless drive is here also sufficient.
The triggering of the STO can also be made by actuating the emergency stop switch. During the automated test, the STO can also be triggered via the contacts of an external relay

Following the test steps

The performance of the individual test steps of the STO function must be logged. A protocol specimen can be found in the following section.
Depending on the machine version, additional or other test steps may be required.

STO test protocol specimen (Safety Option S1)

General information:
Project/machine:

Servo axis:

Name of the tester:

STO function test:

Test specification according to the Compax3 release:

STO function test steps 1-6: o successfully tested

Acknowledgement safety switching device: o successfully tested o is not used

Safe stop 1: o successfully tested o is not used

Initial acceptance on:
Repeat check on:

Signature of the tester
Signature of the tester

3.10.3.7 Technical details of the Compax3M S1 option

Safety technology Compax3M

Safe torque-off in accordance with EN ISO 13849-1: 2007, Category 3, PL=e Certified.
Test mark MFS 09029

Please respect the stated safety technology on the type designation plate (see on page 13) and the circuitry examples (see on page 91)

Compax3M S1 Option: Signal inputs for connector X14

Nominal voltage of the inputs	24 V
Required isolation of the 24V control voltage	Grounded protective extra low voltage, PELV
Protection of the STO control voltage	1 A
Number of inputs Signal inputs via optocoupler	2 Low $=0 \ldots .7 \mathrm{~V}$ DC or open High = 15...30V DC $\mathrm{I}_{\text {in }}$ at 24V DC: 8mA
STO1/	Low = STO activated High = STO deactivated Reaction time max. 3ms
STO2/	Low = STO activated High = STO deactivated Reaction time max. 3ms
Switch-off time with unequal input statuses	20 s (max. error reaction time)
Grouping of safety level	Category 3 \bullet PL=e (according to table 4 in EN ISO 13849-1 this corresponds to SIL 3)
\bullet PFHd=4.29E-8	
\bullet Lifetime: 20 years	

-

4. Setting up Compax3

In this chapter you can read about:
Configuration 100
Configuring the signal Source 151
Load control. 156
Optimization 159

4.1 Configuration

In this chapter you can read about:

Selection of the supply voltage used 101
Motor selection 102
Optimize motor reference point and switching frequency of the motor current. 102
Ballast resistor 105
General drive 105
Defining the reference system 106
Defining jerk / ramps 130
Limit and monitoring settings 132
Encoder simulation 135
I/O Assignment. 136
Position mode in reset operation. 137
Reg-related positioning / defining ignore zone 139
Write into set table 139
Motion functions 142
Error response. 149
Configuration name / comments 149
Dynamic positioning 150

The general proceeding in order to operate an empty-running motor is described here (see on page 101).

Configurations sequence:

Installation of the C3 ServoManager

The Compax3 ServoManager can be installed directly from the Compax3 DVD. Click on the corresponding hyperlink resp. start the installation program "C3Mgr_Setup_V.....exe" and follow the instructions.

PC requirements

Recommendation:

Operating system:	MS Windows XP SP3 / MS Vista (32 Bit) / Windows 7 (32 Bit / 64 Bit)
Browser:	MS Internet Explorer 8.x or higher
Processor:	Intel / AMD Multi core processor >=2GHz
RAM memory:	$>=1024$ MB
Hard disk:	$>=20 \mathrm{~GB}$ available memory
Drive:	DVD drive (for installation)
Monitor:	Resolution 1024x768 or higher
Graphics card:	on onboard graphics (for performance reasons)
Interface:	USB 2.0

Minimum requirements:

Operating system: MS Windows XP SP2 / MS Windows 2000 as from SP4
Browser: MS Internet Explorer 6.x
Processor: $\quad>=1.5 \mathrm{GHz}$
RAM memory: 512MB
Hard disk: 10GB available memory
Drive: DVD drive
Monitor: \quad Resolution 1024×768 or higher
Graphics card: on onboard graphics (for performance reasons)
Interface: USB

Note:

- For the installation of the software you need administrator authorization on the target computer.
- Several applications running in parallel, reduce the performance and operability.
- Especially customer applications, exchanging standard system components (drivers) in order to improve their own performance, may have a strong influence on the communication performance or even render normal use impossible.
- Operation under virtual machines such as Vware Workstation 6/ MS Virtual PC is not possible.
- Onboard graphics card solutions reduce the system performance by up to 20% and cannot be recommended.
- Operation with notebooks in current-saving mode may lead, in individual cases, to communication problems.

Connection between PC and Compax3	Your PC is connected with Compax3 via a RS232 cable (SSK1 (see on page 376). Start the Compax3 ServoManager and make the setting for the selected interface in the "Options Communication settings RS232/RS485..." menu.
Device Selection	In the menu tree under device selection you can read the device type of the connected device (Online Device Identification) or select a device type (Device Selection Wizard).
Configuration	Then you can double click on "Configuration" to start the configuration wizard. The wizard will lead you through all input windows of the configuration.
	Input quantities will be described in the following chapters, in the same order in which you are queried about them by the configuration wizard.

In the device online help, we show you at this place an animation of a test setup with the aim to move an unloaded motor.

- Simple and independent of the Compax3 device variant*
- Without overhead for configuration
-Without special knowledge in programming
* for device specific functions, please refer to the corresponding device description.

Due to continuous optimization, individual monitor displays may have changed. This does however hardly influence the general proceeding.

4.1.1. Selection of the supply voltage used

Please select the mains voltage for the operation of Compax3.
This influences the choice of motors available.

4.1.2. Motor selection

The selection of motors can be broken down into:

- Motors that were purchased in Europe and
- Motors that were purchased in the USA.
- You will find non-standard motors under "Additional motors" and
- under "User-defined motors" you can select motors set up with the C3 MotorManager.
For motors with holding brake SMHA or MHA brake delay times can be entered. For this see Brake delay times (see on page 271).

Pleas note the following equivalence that applies regarding terms concerning linear motors:

- Rotary motors / linear motors
- Revolutions \equiv Pitch
\bullet Rotation speed (velocity) \equiv Speed
- Torque = Power
- Moment of inertia \equiv Load

Notes on direct drives (see on page 343) (Linear and Torque - Motors)

4.1.3. Optimize motor reference point and switching frequency of the motor current

Optimization of the
motor reference

point

The motor reference point is defined by the reference current and the reference (rotational) speed.
Standard settings are:

- Reference current = nominal current
-Reference (rotational) speed = nominal (rotational) speed
These settings are suitable for most cases.
The motors can, however, be operated with different reference points for special applications.
- By reducing the reference (rotational) speed, the reference current can be increased. This results in more torque with a reduced speed.
-For applications where the reference current is only required cyclically with long enough breaks in between, you may use a reference current higher than I_{0}. The limit value is however reference current = max. $1.33 * I_{0}$. The reference velocity must also be reduced.
The peak current is not changed from Release R09-20, it remains fixed to the value taken from the motor library.
With exception of R09-20, the peak current was also adapted with the changing of the reference current.
The possible settings or limits result from the respective motor characteristics.

Caution!

Wrong reference values (too high) can cause the motor to switch off during operation (because of too high temperature) or even cause damage to the motor.

Optimization of the switching frequency

The switching frequency of the power output stage is preset to optimize the operation of most motors.
It may, however, be useful to increase the switching frequency especially with direct drives in order to reduce the noise of the motors. Please note that the power output stage must be operated with reduced nominal currents in the case of increased switching frequencies.
The switching frequency may only be increased.

Caution!

By increasing the motor current switching frequency, the nominal current and the peak current are reduced.
This must already be observed in the planning stage of the plant!
The preset motor current switching frequency depends on the performance variant of the Compax3 device.
The respective Compax3 devices can be set as follows:
Resulting nominal and peak currents depending on the switching frequency

Compax3S0xxV2 at $1 * 230 V A C / 240 V A C$

Switching frequency		$\mathbf{S 0 2 5 V 2}$	$\mathbf{S 0 6 3 V 2}$
$\mathbf{1 6 k H z}$	$\mathrm{I}_{\text {nom }}$	$\mathbf{2 . 5 A}_{\text {rms }}$	$\mathbf{6 . 3 A}_{\text {rms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$\mathbf{5 . 5 A}_{\text {rms }}$	$\mathbf{1 2 . 6 A}_{\text {rms }}$
	$\mathrm{I}_{\text {nom }}$	$2.5 \mathrm{~A}_{\text {rms }}$	$5.5 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$5.5 \mathrm{~A}_{\text {ms }}$	$12.6 \mathrm{~A}_{\text {rms }}$

Compax3S1xxV2 at 3*230VAC/240VAC

Switching frequency*		$\mathbf{S 1 0 0 V 2}$	$\mathbf{S 1 5 0 V 2}$
$\mathbf{8 k H z}$	$\mathrm{I}_{\text {nom }}$	-	$\mathbf{1 5 A}_{\text {rms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	-	$\mathbf{3 0 A}_{\text {rms }}$
	$\mathrm{I}_{\text {nom }}$	$\mathbf{1 0 A}_{\text {rms }}$	$12.5 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$\mathbf{2 0 A}_{\text {rms }}$	$25 \mathrm{~A}_{\text {ms }}$
$\mathbf{3 2 k H z}$	$\mathrm{I}_{\text {nom }}$	$8 \mathrm{~A}_{\text {ms }}$	$10 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$16 \mathrm{~A}_{\text {ms }}$	$20 \mathrm{~A}_{\text {ms }}$

Compax3S0xxV4 at 3*400VAC

Switching frequency*		S015V4	S038V4	S075V4	S150V4	S300V4
8kHz	$\mathrm{I}_{\text {nom }}$	-	-	-	$15 \mathrm{~A}_{\text {ms }}$	30A ${ }_{\text {rms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	-	-	-	30A ${ }_{\text {ms }}$	$60 \mathrm{~A}_{\text {rms }}$
16kHz	Inom	$1.5 \mathrm{~A}_{\text {rms }}$	3.8A $\mathrm{mms}^{\text {m }}$	$7.5 \mathrm{~A}_{\text {ms }}$	$10.0 \mathrm{~A}_{\text {ms }}$	$26 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$4.5 \mathrm{~A}_{\text {rms }}$	9.0A $\mathrm{mms}^{\text {m }}$	$15.0 \mathrm{~A}_{\text {rms }}$	$20.0 \mathrm{~A}_{\text {ms }}$	$52 \mathrm{~A}_{\text {ms }}$
32kHz	$\mathrm{I}_{\text {nom }}$	$1.5 \mathrm{~A}_{\mathrm{ms}}$	$2.5 \mathrm{~A}_{\text {ms }}$	$3.7 \mathrm{~A}_{\text {ms }}$	$5.0 \mathrm{~A}_{\text {ms }}$	$14 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$3.0 \mathrm{~A}_{\text {ms }}$	$5.0 \mathrm{~A}_{\text {ms }}$	$10.0 \mathrm{~A}_{\text {ms }}$	$10.0 \mathrm{~A}_{\text {ms }}$	$28 \mathrm{~A}_{\text {ms }}$

Compax3S0xxV4 at 3*480VAC

Switching frequency*		S015V4	S038V4	S075V4	S150V4	S300V4
8kHz	$\mathrm{I}_{\text {nom }}$	-	-	-	$13.9 \mathrm{~A}_{\text {rms }}$	30A ${ }_{\text {rms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s}$)	-	-	-	$\mathbf{3 0 A}_{\text {rms }}$	$60 \mathrm{~A}_{\text {rms }}$
16kHz	$\mathrm{I}_{\text {nom }}$	$1.5 \mathrm{~A}_{\text {rms }}$	$3.8 \mathrm{~A}_{\text {ms }}$	$6.5 \mathrm{~A}_{\text {rms }}$	$8.0 \mathrm{~A}_{\text {ms }}$	$21.5 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s}$)	$4.5 \mathrm{~A}_{\text {rms }}$	7.5A $\mathrm{frms}^{\text {m }}$	$15.0 \mathrm{~A}_{\text {ms }}$	$16.0 \mathrm{~A}_{\text {ms }}$	$43 \mathrm{~A}_{\text {ms }}$
32kHz	$\mathrm{I}_{\text {nom }}$	$1.0 \mathrm{~A}_{\text {ms }}$	$2.0 \mathrm{~A}_{\text {ms }}$	$2.7 \mathrm{~A}_{\text {ms }}$	$3.5 \mathrm{~A}_{\text {ms }}$	$10 A_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$2.0 \mathrm{~A}_{\text {ms }}$	$4.0 \mathrm{~A}_{\text {ms }}$	$8.0 \mathrm{~A}_{\text {ms }}$	$7.0 \mathrm{~A}_{\text {ms }}$	$20 \mathrm{~A}_{\text {ms }}$

The values marked with grey are the pre-set values (standard values)!
*corresponds to the frequency of the motor current

Resulting nominal and peak currents depending on the switching frequency

Compax $3 \mathrm{HxxxV4}$ at $3 * 400 \mathrm{VAC}$

Switching frequency*		H050V4	H090V4	H125V4	H155V4
8kHz	$\mathrm{I}_{\text {nom }}$	$50 \mathrm{~A}_{\text {ms }}$	90A ${ }_{\text {ms }}$	$125 \mathrm{~A}_{\text {ms }}$	$155 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s}$)	$75 \mathrm{~A}_{\text {ms }}$	$135 \mathrm{~A}_{\text {ms }}$	$187.5 \mathrm{~A}_{r}$	$\begin{aligned} & 232.5 \mathrm{~A}_{\mathrm{r}} \\ & \mathrm{~ms} \end{aligned}$
16kHz	$\mathrm{I}_{\text {nom }}$	$33 \mathrm{~A}_{\text {ms }}$	$75 \mathrm{~A}_{\text {ms }}$	$82 \mathrm{~A}_{\text {ms }}$	$100 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$49.5 \mathrm{~A}_{\text {ms }}$	$112.5 \mathrm{~A}_{\mathrm{r}}$	$123 \mathrm{~A}_{\text {ms }}$	$150 \mathrm{~A}_{\text {ms }}$
32kHz	$\mathrm{I}_{\text {nom }}$	$19 \mathrm{~A}_{\text {ms }}$	$45 \mathrm{~A}_{\text {ms }}$	$49 \mathrm{~A}_{\text {ms }}$	$59 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$28.5 \mathrm{~A}_{\text {ms }}$	$67.5 \mathrm{~A}_{\text {ms }}$	$73.5 \mathrm{~A}_{\text {ms }}$	$88.5 \mathrm{~A}_{\mathrm{ms}}$

Compax3HxxxV4 at 3*480VAC

Switching frequency*		H050V4	H090V4	H125V4	H155V4
8kHz	$\mathrm{I}_{\text {nom }}$	$43 \mathrm{~A}_{\text {ms }}$	$85 \mathrm{~A}_{\text {ms }}$	$110 \mathrm{~A}_{\text {ms }}$	$132 A_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s}$)	$64.5 \mathrm{~A}_{\text {ms }}$	$127.5 \mathrm{~A}_{\mathrm{r}}$	$165 \mathrm{~A}_{\text {ms }}$	$198 \mathrm{~A}_{\text {ms }}$
16kHz	$\mathrm{I}_{\text {nom }}$	$27 \mathrm{~A}_{\text {ms }}$	$70 \mathrm{~A}_{\text {ms }}$	$70 \mathrm{~A}_{\text {ms }}$	$84 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s}$)	$40.5 \mathrm{~A}_{\text {ms }}$	$105 A_{\text {ms }}$	$105 \mathrm{~A}_{\text {ms }}$	$126 A_{\text {ms }}$
32kHz	$\mathrm{I}_{\text {nom }}$	$16 \mathrm{~A}_{\text {ms }}$	$40 \mathrm{~A}_{\text {ms }}$	$40 \mathrm{~A}_{\text {ms }}$	$48 \mathrm{~A}_{\text {ms }}$
	$\mathrm{l}_{\text {peak }}(<5 \mathrm{~s}$)	$24 \mathrm{~A}_{\text {ms }}$	$60 \mathrm{~A}_{\text {ms }}$	$60 \mathrm{~A}_{\text {ms }}$	$72 A_{\text {ms }}$

The values marked with grey are the pre-set values (standard values)!
*corresponds to the frequency of the motor current
Resulting nominal and peak currents depending on the switching frequency
Compax3MxxxD6 at 3*400VAC

Switching frequency*		M050D6	M100D6	M150D6	M300D6
8kHz	$\mathrm{I}_{\text {nom }}$	$5 \mathrm{~A}_{\text {ms }}$	$10 \mathrm{~A}_{\text {ms }}$	$15 \mathrm{~A}_{\text {ms }}$	$30 \mathrm{~A}_{\text {ms }}$
	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { peak } \\ (<5 s) \\ (<5) \end{array} \\ \hline \end{array}$	$10 \mathrm{~A}_{\text {ms }}$	$20 \mathrm{~A}_{\text {ms }}$	$30 \mathrm{~A}_{\text {ms }}$	$60 \mathrm{~A}_{\text {ms }}$
16kHz	$\mathrm{I}_{\text {nom }}$	$3.8 \mathrm{~A}_{\text {ms }}$	$7.5 \mathrm{~A}_{\text {ms }}$	$10 \mathrm{~A}_{\text {ms }}$	$20 \mathrm{~A}_{\text {ms }}$
	$\begin{array}{\|l} \hline \begin{array}{l} I_{\text {peak }} \\ (<5 \mathrm{~s}) \end{array} \end{array}$	$7.5 \mathrm{~A}_{\text {ms }}$	$15 \mathrm{~A}_{\text {ms }}$	$20 \mathrm{~A}_{\text {ms }}$	$40 \mathrm{~A}_{\text {ms }}$
32kHz	$\mathrm{I}_{\text {nom }}$	$2.5 \mathrm{~A}_{\text {ms }}$	$3.8 \mathrm{~A}_{\text {ms }}$	$5 \mathrm{~A}_{\text {ms }}$	$11 \mathrm{~A}_{\text {ms }}$
	$\begin{array}{\|l\|} \hline I_{\text {peak }} \\ (<5 \mathrm{~s}) \end{array}$	$5 \mathrm{~A}_{\text {ms }}$	$7.5 \mathrm{~A}_{\text {ms }}$	$10 \mathrm{~A}_{\text {ms }}$	$22 \mathrm{~A}_{\text {ms }}$

Compax3MxxxD6 at 3*480VAC

Switching frequency*		M050D6	M100D6	M150D6	M300D6
8kHz	$\mathrm{I}_{\text {nom }}$	$4 \mathrm{~A}_{\text {ms }}$	$8 \mathrm{~A}_{\text {ms }}$	$12.5 \mathrm{~A}_{\mathrm{ms}}$	$25 \mathrm{~A}_{\text {ms }}$
	$\begin{array}{\|l\|} \hline I_{\text {peak }} \\ (<5 s) \end{array}$	$8 \mathrm{~A}_{\text {ms }}$	$16 \mathrm{~A}_{\text {ms }}$	$25 \mathrm{~A}_{\text {ms }}$	$50 \mathrm{~A}_{\text {ms }}$
16kHz	$\mathrm{I}_{\text {nom }}$	$3 \mathrm{~A}_{\text {ms }}$	$5.5 \mathrm{~A}_{\text {ms }}$	$8 \mathrm{~A}_{\text {ms }}$	$15 \mathrm{~A}_{\text {ms }}$
	$\begin{array}{\|l\|} \hline I_{\text {peak }} \\ (<5 s) \end{array}$	$6 A_{\text {ms }}$	$11 \mathrm{~A}_{\text {ms }}$	$16 A_{\text {ms }}$	$30 \mathrm{~A}_{\text {ms }}$
32kHz	$\mathrm{I}_{\text {nom }}$	$2 \mathrm{~A}_{\text {ms }}$	$2.5 \mathrm{~A}_{\text {ms }}$	$4 \mathrm{~A}_{\text {ms }}$	$8.5 \mathrm{~A}_{\text {ms }}$
	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { peak } \\ (<5 s) \end{array} \\ (<2 \end{array}$	$4 \mathrm{~A}_{\text {ms }}$	$5 \mathrm{~A}_{\text {ms }}$	$8 \mathrm{~A}_{\text {ms }}$	$17 \mathrm{~A}_{\text {ms }}$

The values marked with grey are the pre-set values (standard values)!
*corresponds to the frequency of the motor current

4.1.4.
 Ballast resistor

If the regenerative brake output exceeds the amount of energy that can be stored by the servo controller (see on page 395), then an error will be generated. To ensure safe operation, it is then necessary to either - reduce the accelerations resp. the decelerations, - or to use an external ballast resistor (see on page 359).

Please select the connected ballast resistor or enter the characteristic values of your ballast resistor directly.

Please note that with resistance values greater than specified, the power output from the servo drive can no longer be dissipated in the braking resistor.

4.1.5. General drive

External moment of inertia / load

The external moment of inertia is required for adjusting the servo controller. The more accurately the moment of inertia of the system is known, the better is the stability and the shorter is the settle-down time of the control loop.
It is important to specify the minimum and maximum moment of inertia for best possible behavior under varying load.
If you do not know the moment of inertia, click on "Unknown: using default values". You have then the possibility to determine the moment of inertia by means of automatic load identification (see on page 232).
Minimum moment of inertia / minimum load

Maximum moment of inertia / maximum load

Enter minimum = maximum moment of inertia when the load does not vary.

4.1.6. Defining the reference system

The reference system for positioning is defined by:

- a unit,
- the travel distance per motor revolution,
- a machine zero point with true zero,
- positive and negative end limits.

4.1.6.1 Measure reference

In this chapter you can read about:
You can select from among the following for the unit:

- mm,

Unit increments *

- angle degrees or
- Inch.

The unit of measure is always [mm] for linear motors.
*

The unit "increments" is valid only for position values!
Speed, acceleration and jerk are specified in this case in revolutions/s, revolutions $/ \mathrm{s}^{2}$ and revolutions $/ \mathrm{s}^{3}$ (resp. pitch/s, pitch/s s^{2}, pitch/s ${ }^{3}$ for linear motors).

Travel distance per motor revolution / pitch

The measure reference to the motor is created with the value:
"travel distance per motor revolution / pitch" in the selected unit.

Input as numerator and denominator

You can enter the "travel distance per motor revolution" as a fraction (numerator divided by denominator). This is useful in the case of continuous operation mode or in reset mode if the value cannot be specified as a rational number. Long term drifts can be avoided by integer numerators and denominators.

Example 1:

Rotary table control

Unit: Grade
Gear transmission ratio 70:4 => 4 load revolutions $=70$ motor revolutions
Travel distance per motor revolution $=4 / 70 * 360^{\circ}=20.5714285 \ldots{ }^{\circ}$ (number cannot be represented exactly)
Instead of this number, you have the option of entering it exactly as a numerator and denominator:
Travel distance per motor revolution $=144 / 7$
This will not result in any drift in continuous operation mode or in reset mode, even with relatively long motion in one direction.

Example 2:

Conveyor belt

Unit: mm
Gear transmission ratio 7:4 => 4 load revolutions $=7$ motor revolutions
Number of pinions: 12
Tooth separation: 10 mm
Travel path per motor revolution $=4 / 7$ * 12 * $10 \mathrm{~mm}=68.5714285 \ldots \mathrm{~mm}$ (this number cannot be expressed exactly)
Instead of this number, you have the option of entering it exactly as a numerator and denominator:
Travel distance per motor revolution $=480 / 7 \mathrm{~mm}$
For "travel distance per motor revolution" that can be represented exactly, enter 1 as the denominator.

Travel distance per motor revolution /-pitch

Numerator

Unit: Unit	Range: depends on the unit selected	Standard value: depends on the unit selected
Resolution: 0.0000001 (7 decimal places)		
Unit	Division	Standard value
Increments*	$10 \ldots 1000000$	1024
mm	$0.0100000 \ldots 2000.0000000$	1.0000000
Grade	$0.0100000 \ldots 720.0000000$	360.0000000
Inch	$0.010000 \ldots 2000.000000$	1.000000

Denominator

Unit: -	Range: $1 \ldots 1000000$	Standard value: 1
Integer value		

The unit "increments" is valid only for position values!

Speed, acceleration and jerk are specified in this case in revolutions/s, revolutions $/ \mathrm{s}^{2}$ and revolutions $/ \mathrm{s}^{3}$ (resp. pitch/s, pitch/s ${ }^{2}$, pitch $/ \mathrm{s}^{3}$ for linear motors).

Invert Motor Rotation/Direction Polarity

Unit: -	Range: no / yes	Standard value: no
Reverse direction inverts the sense of rotation, i.e. the direction of movement of the motor is reversed in the case of equal setpoint.		

Reset mode Reset mode is available for applications in which the positioning range repeats; some examples are: Rotary table applications, belt conveyor. ...
After the reset travel distance (exactly specifiable as numerator and denominator (see on page 106)) the position values in Compax3 are reset to 0 .

Example:

Conveyor belt (from the "Conveyor belt" example) with reset path

A reset path of 300 mm can be entered directly with numerator $=300 \mathrm{~mm}$ and denominator $=1$.
Reset mode is not possible for linear motors.

Reset distance

Numerator

Unit: Unit	Range: depends on the unit selected	Standard value: depends on the unit selected
Unit	Division	Standard value
Increments	$10 \ldots 1000000$	0
mm	$1 \ldots 2000$	0
Grade	$1 \ldots 720$	0

Denominator

Unit: -	Range: $1 \ldots 1000000$	Standard value: 0
Integer value		

Turn off reset mode

Reset mode is turned off for numerator $=0$ and denominator $=0$.

4.1.6.2 Machine Zero

The Compax3 machine zero modes are adapted to the CANopen profile for Motion Control CiADS402.

Position reference

Essentially, you can select between operation with or without machine reference.
point The reference point for positioning is determined by using the machine reference and the machine reference offset.

Machine reference run

In a homing run the drive normally (see on page 109) moves to the position value 0 immediately after finding the home switch. The position value 0 is defined via the homing offset.

A machine reference run is required each time after turning on the system for operation with machine reference.

Please note:

During homing run the software end limits are not monitored.

In this chapter you can read about:

Positioning after homing run .. 109
Absolute encoder... 110
Operation with MultiTurn emulation .. 111
Store absolute position in the feedback .. 111
Machine zero modes overview.. 112
Homing modes with home switch (on X12/14) .. 114
Machine zero modes without home switch... 120
Adjusting the machine zero proximity switch.. 124
Machine zero speed and acceleration.. 125

Positioning after homing run

The positioning made after the home switch has been found can be switched off. For this enter in the "machine zero" window in the configuration wizard "no" under "approach MN point after MN run".
Example Homing (MN) mode 20 (Home on homing (MN) switch) with T40 by homing offset 0

With positioning after homing run The motor stands then on 0 :

Without positioning after homing run The position reached is not exactly on 0 , as the drive brakes when detecting the home and stops:

If the homing mode is active, there will always be a homing run with the first start after each configuration download (with the aid of the C3 ServoManager) Homing run (see on page 139).

Absolute encoder

Using a SinCos ${ }^{\oplus}$ or EnDat Multiturn absolute value sensor as feedback system, the absolute position can be read in over the entire travel range when switching on the Compax3. This means that a machine zero run is not necessary after the switching on (feedback may not be shifted by the absolute range while switched off).
In this case the reference only needs to be established once

- at initial commissioning time
- after an exchange of motor / feedback system
- after a mechanical modification and
\bullet after an exchange of device (Compax3); does not apply for the "Store absolute position in feedback" function.
- after a configuration download
by carrying out a machine zero run.
The homing mode 35 " MN at the current position (see on page 120)" is appropriate for this, because it is therewith possible to operate without proximity switch, but any other homing mode is possible too - if the hardware prerequisites are fulfilled.
When you have once re-established the reference, reset the machine zero run mode to "without machine zero run".

Operation with MultiTurn emulation

You can simulate the function of a Multiturn over the entire travel distance by the aid of a Multiturn emulation. A resolver or a $\operatorname{SinCos}^{\ominus} / E n D a t$ Singleturn feedback is sufficient as a feedback signal from the motor.
It differs from the physical Multiturn in the way that the motor may not be moved by more than half a turn if Compax3 (24VDC) is switched off - unless the absolute position is lost.
Besides that, the Multiturn emulation offers the same function as the physical Multiturn feedback.
You can switch on the Multiturn emulation directly in the wizard.
You can assign the maximum permissible motor angle via the Multiturn validity window
If Compax3 states after switching on that this value is not exceeded, then das "Referenziert" gesetzt (Zustandswort Bit 12 oder Ausgang M.A8) is applied. Compax3 restores nevertheless the absolute position, the motor angle is correct, the absolute position may however not be correct, if the motor was moved by more than the validity window while currentless.

Attention: In this case, the drive is considered "not referenced" and the software end limit monitoring is inactive!

Machine reference For a unique machine zero run the same conditions apply as for the use of an run absolute encoder (Multiturn)

Store absolute position in the feedback

With SinCos ${ }^{\oplus}$ or EnDat feedback systems, the absolute position can be memorized in the feedback; therefore the Compax3 device can be exchanged without loss of position.
The function is possible with Multiturn absolute value feedback systems and in combination with the "Multiturn emulation" function and is activated by selecting "Store absolute position: in the position feedback" (Configuration wizard: Reference system).
The standard setting valid up to now is "Store absolute position: in the device".

Read / write position value

The writing process into the position feedback takes place upon a successful machine zero run. After PowerOn of Compax3, the position value of the position feedback is read out.

Please note:

- Other data stored in the feedback are overwritten!
- The motor may not move away from the homing position by more than +/-2048 revolutions (motor position upon completed homing mode), otherwise, the motor position will be lost after PowerOff/On
(->endless instructions with only one travel direction or with one stroke bigger than 2048 motor revolutions are not permitted in this operating mode)!

Machine zero modes overview

Selection of the machine zero modes (MN-M)

Machine home switch on X12/14: MN-M 3 ... 14, 19 ... 30	Without motor reference point MN-M 19 ... 30	without direction reversal switches: MN-M 19, 20 (see on page 114), MN-M 21, 22 (see on page 115)
		with reversal switches: MN-M 23, 24, 25, 26 (see on page 116), MN-M 27, 28, 29, 30 (see on page 116)
	With motor reference point MN-M 3 ... 14 (possibly an initiator adjustment (see on page 124) is required)	without direction reversal switches: MN-M 3, 4 (see on page 117), MN-M 5, 6 (see on page 118)
		with reversal switches: MN-M 7, 8, 9, 10 (see on page 119), MN-M 11,12,13, 14 (see on page 119)
Without machine zero initiator on X12/14: MN-M 1, 2, 17, 18, 33 .. $35,128,129,130 \text {... } 133$	Without motor reference point MN-M 17, 18, 35, 128, 129	MN-M 35: on the actual position (see on page 120) MN-M 128, 129: by moving to block (see on page 120)
		With limit switch as machine zero: MN-M 17, 18 (see on page 121)
		Only motor reference: MN-M 33, 34 (see on page 122), MN-M 130, 131 (see on page 122)
		With limit switch as machine zero: MN-M 1, 2 (see on page 123), MN-M 132, 133 (see on page 124)

Definition of terms / explanations:

Motor zero point	Zero pulse of the feedback
	Motor feedback systems such as resolvers or $\mathrm{SinCos}^{\ominus} / \mathrm{EnDat}$ give one pulse per revolution.
	Some motor feedback systems of direct drives do also have a zero pulse, which is generated once or in defined intervals.
	By interpreting the motor zero point (generally in connection with the machine zero initiator) the machine zero can be defined more exactly.
Machine zero initiator:	For creating the mechanical reference
	Has a defined position within or on the edge of the travel range.
Direction reversal switches:	Initiators on the edge of the travel range, which are used only with a machine zero run in order to detect the end of the travel range.
	In some cases, the function "direction reversal via Stromschwelle" is also possible, then you will need no initiator, Compax3 detects the end of the travel range via the threshold. Please observe the respective notes.
	During operation, the direction reversal switches are often used as limit switches.

Example axis with the initiator signals

1: Direction reversal / end switch on the negative end of the travel range
(the assignment of the reversal / end switch inputs (see on page 129) to travel range side can be changed).
2: Machine zero initiator (can, in this example, be released to 2 sides)
3: Direction reversal / end switch on the positive end of the travel range (the assignment of the reversal / end switch inputs (see on page 129) to travel range side can be changed).
4: Positive direction of movement
5: \quad Signals of the motor zero point (zero pulse of the motor feedback)
6: Signal of the machine zero initiator
(without inversion of the initiator logic (see on page 129)).
7: Signal of the direction reversal resp. end switch on the positive end of the travel range (without inversion of the initiator logic).
8: Signal of the direction reversal / resp. end switch on the negative end of the travel range (without inversion of the initiator logic).
9: Signal of the machine zero initiator (with inversion of the initiator logic (see on page 129)).
10: Signal of the direction reversal resp. end switch on the positive end of the travel range (with inversion of the initiator logic).
11: Signal of the direction reversal / end switch on the negative end of the travel range (with inversion of the initiator logic).
12: Logic state of the home switch (independent of the inversion)
13: Logic state of the direction reversal resp. end switch on the positive end of the travel range (independent of the inversion)
14: Logic state of the direction reversal resp. end switch on the negative end of the travel range (independent of the inversion)
The following principle images of the individual machine zero modes always refer to the logic state $(12,13,14)$ of the switches.

Without motor zero point, without direction reversal switches

MN-M 21,22: MN Initiator = 1 on the negative side

The MN initiator can be positioned at any location within the travel range. The travel range is then divided into 2 contiguous ranges: one range with deactivated MN initiator (positive part of the travel range) and one range with activated MN initiator (negative part of the travel range).
When the MN initiator is inactive (signal $=0$) the search for the machine reference is in the negative travel direction.

MN-M 21: The negative edge of the MN proximity switch is taken directly as MN (the motor zero point remains without consideration).
MN-M 22: The positive edge of the MN proximity switch is used directly as MN (the motor zero point remains without consideration).

With direction reversal switches

Machine zero modes with a home switch which is activated in the middle of the travel range and can be deactivated to both sides.
The assignment of the direction reversal switches (see on page 129) can be changed.

Function Reversal via Stromschwelle

If no direction reversal switches are available, the reversal of direction can also be performed during the machine zero run via the function "direction reversal via Stromschwelle".
The drive drives against the mechanical end stop.
When the adjustable Stromschwelle is reached, the drive is decelerated and changes the direction of movement.

Caution!
Wrong settings can cause hazard for man and machine.

It is therefore essential to respect the following:

- Choose a low machine zero speed.
- Set the machine zero acceleration to a high value, so that the drive changes direction quickly, the value must, however, not be so high that the limit threshold is already reached by accelerating or decelerating (without mechanical limitation).
- The mechanical limitation as well as the load drain must be set so that they can absorb the resulting kinetic energy.
- With a bad feedback signal or high controller gain (fast controller or high inertia or mass) the machine zero might not be detected.
In this case it is necessary to use the control signal filter (O2100.20) or the velocity filter (O2100.10).

MN-M 23...26: Direction reversal switches on the positive side
Without motor zero point, with direction reversal switches

1: Logic state of the home switch
2: Logic state of the direction reversal switch
MN-M 27...30: Direction reversal switches on the negative side
Without motor zero point, with direction reversal switches

1: Logic state of the home switch
2: Logic state of the direction reversal switch

With motor reference point

In this chapter you can read about:

Without direction reversal switches 117
With direction reversal switches. 118

Without direction reversal switches

MN-M 3,4: MN-Initiator = 1 on the positive side
The MN initiator can be positioned at any location within the travel range. The travel range is then divided into 2 contiguous ranges: one range with deactivated MN initiator (left of the MN initiator) and one range with activated MN initiator (right of the MN initiator).
When the MN initiator is inactive (signal =0) the search for the machine reference is in the positive travel direction.

With motor zero point, without direction reversal switches

MN-M 3: The 1st motor zero point at MN initiator = " 0 " is used as MN.
MN-M 4: The 1st motor reference point with MN initiator $=" 1$ " is used as the MN.

MN-M 5,6: MN Initiator = 1 on the negative side

The MN initiator can be positioned at any location within the travel range. The travel range is then divided into 2 continuous ranges: one range with deactivated MN initiator (positive part of the travel range) and one range with activated MN initiator (negative part of the travel range).
When the MN initiator is inactive (signal $=0$) the search for the machine reference is in the negative travel direction.

With motor zero point, without direction reversal switches

MN-M 5: The 1st motor reference point with MN initiator = " 0 " is used as the MN. MN-M 6: The 1st motor reference point with MN initiator = " 1 " is used as the MN.

With direction reversal switches

Machine zero modes with a home switch which is activated in the middle of the travel range and can be deactivated to both sides.
The assignment of the direction reversal switches (see on page 129) can be changed.

Function Reversal via Stromschwelle

If no direction reversal switches are available, the reversal of direction can also be performed during the machine zero run via the function "direction reversal via Stromschwelle".
The drive drives against the mechanical end stop.
When the adjustable Stromschwelle is reached, the drive is decelerated and changes the direction of movement.

Caution! Wrong settings can cause hazard for man and machine.

It is therefore essential to respect the following:

- Choose a low machine zero speed.
- Set the machine zero acceleration to a high value, so that the drive changes direction quickly, the value must, however, not be so high that the limit threshold is already reached by accelerating or decelerating (without mechanical limitation).
- The mechanical limitation as well as the load drain must be set so that they can absorb the resulting kinetic energy.
- With a bad feedback signal or high controller gain (fast controller or high inertia or mass) the machine zero might not be detected.
In this case it is necessary to use the control signal filter (O2100.20) or the velocity filter (O2100.10).

With motor zero point, with direction reversal switches

MN-M 7...10: Direction reversal switches on the positive side
Machine zero modes with a home switch which is activated in the middle of the travel range and can be deactivated to both sides.

1: Motor zero point
2: Logic state of the home switch
3: Logic state of the direction reversal switch
MN-M 11...14: With direction reversal switches on the negative side
With motor zero point, with direction reversal switches

Machine zero modes with a home switch which is activated in the middle of the travel range and can be deactivated to both sides.

Machine zero modes without home switch
In this chapter you can read about:
Without motor reference point 120
With motor reference point. 122

Without motor reference point

MN-M 35: MN (machine zero) at the current position

The current position when the MN run is activated is used as an MN.

Please note: Due to encoder noise it is possible that a value <> 0 is set when teaching to 0 . If end limits $=0$, an end limit error may occur during homing run.

MN-M 128/129: Stromschwelle while moving to block

Without a MN (machine zero) initiator, an end of travel region (block) is used as MN (machine zero).
For this the Stromschwelle is evaluated if the drive pushes against the end of the travel region. When the adjusted current is exceeded, the Homing is set. During the homing run (MN), the error reaction "following error" is deactivated.

Please observe:

The machine zero offset must be set so that the zero point (reference point) for positioning lies within the travel range.

MN-M 128: Travel in the positive direction to the end of the travel region

MN-M 129: Travel in the negative direction to the end of the travel region

| Caution! |
| :--- | :--- |
| Wrong settings can cause hazard for man and machine. |

It is therefore essential to respect the following:
-Choose a low machine zero speed.

- Set the machine zero acceleration to a high value, so that the drive changes direction quickly, the value must, however, not be so high that the limit threshold is already reached by accelerating or decelerating (without mechanical limitation).
- The mechanical limitation as well as the load drain must be set so that they can absorb the resulting kinetic energy.
- With a bad feedback signal or high controller gain (fast controller or high inertia or mass) the machine zero might not be detected.
In this case it is necessary to use the control signal filter (O2100.20) or the velocity filter (O2100.10).

MN-M 17,18: Limit switch as machine zero

1: Logic state of the direction reversal switch

Function Reversal via Stromschwelle

If no direction reversal switches are available, the reversal of direction can also be performed during the machine zero run via the function "direction reversal via Stromschwelle".
The drive drives against the mechanical end stop.
When the adjustable Stromschwelle is reached, the drive is decelerated and changes the direction of movement.

Caution!
Wrong settings can cause hazard for man and machine.

It is therefore essential to respect the following:
-Choose a low machine zero speed.

- Set the machine zero acceleration to a high value, so that the drive changes direction quickly, the value must, however, not be so high that the limit threshold is already reached by accelerating or decelerating (without mechanical limitation).
-The mechanical limitation as well as the load drain must be set so that they can absorb the resulting kinetic energy.
- With a bad feedback signal or high controller gain (fast controller or high inertia or mass) the machine zero might not be detected. In this case it is necessary to use the control signal filter (O2100.20) or the velocity filter (O2100.10).

With motor reference point

In this chapter you can read about:

Machine zero only from motor reference..

Machine zero only from motor reference

MN-M 33,34: MN at motor zero point
The motor reference point is now evaluated (no MN initiator):
Without home switch

MN-M 33: For a MN run, starting from the current position, the next motor zero point in the negative travel direction is taken as the MN.
MN-M 34: For a MN run, starting from the current position, the next motor zero point in the positive travel direction is taken as the MN.

MN-M 130, 131: Acquire absolute position via distance coding
Only for motor feedback with distance coding (the absolute position can be determined via the distance value).
Compax 3 determines the absolute position from the distance of two signals and then stops the movement (does not automatically move to position 0).

1: Signals of the distance coding

With direction reversal switches

Machine zero modes with a home switch which is activated in the middle of the travel range and can be deactivated to both sides.
The assignment of the direction reversal switches (see on page 129) can be changed.

Function Reversal via Stromschwelle

If no direction reversal switches are available, the reversal of direction can also be performed during the machine zero run via the function "direction reversal via Stromschwelle".
The drive drives against the mechanical end stop.
When the adjustable Stromschwelle is reached, the drive is decelerated and changes the direction of movement.

Caution! Wrong settings can cause hazard for man and machine.

It is therefore essential to respect the following:
-Choose a low machine zero speed.

- Set the machine zero acceleration to a high value, so that the drive changes direction quickly, the value must, however, not be so high that the limit threshold is already reached by accelerating or decelerating (without mechanical limitation).
- The mechanical limitation as well as the load drain must be set so that they can absorb the resulting kinetic energy.
- With a bad feedback signal or high controller gain (fast controller or high inertia or mass) the machine zero might not be detected.
In this case it is necessary to use the control signal filter (O2100.20) or the velocity filter (O2100.10).

MN-M 1,2: Limit switch as machine zero
End switch on the negative side

End switch on the positive side:

1: Motor zero point
2: Logic state of the direction reversal switch

MN-M 132, 133: Determine absolute position via distance coding with direction reversal switches

Only for motor feedback with distance coding (the absolute position can be determined via the distance value).
Compax3 determines the absolute position from the distance of two signals and then stops the movement (does not automatically move to position 0).

Adjusting the machine zero proximity switch

This is helpful in some cases with homing modes that work with the home switch and motor reference point.
If the motor reference point happens to coincide with the position of the MN initiator, there is a possibility that small movements in the motor position will cause the machine reference point to shift by one motor revolution (to the next motor reference point).
Via status value "Distance MN sensor - motor zero", (O1130.13) you can check if the distance between machine home sensor and motor zero point is too short.

1: Motor zero point
2: Logic state of the home switch
A solution to this problem is to move the MN initiator by means of software. This is done using the value initiator adjustment.

Initiator adjustment

Unit: Motor angle in degrees	Range: -180 ... 180	Standard value: 0
Move the machine reference initiator using software As an aid you can use the status value "distance MN sensor - motor zero" in the "Positions" chapter under "status values"		

Machine reference offset

The machine reference offset is used to determine the actual reference point for positioning.
That is: Zero point = Machine zero + Machine zero offset
Note: If the machine zero proximity switch is at the positive end of the travel range, the machine zero offset must be $=0$ or negative.

A change in the machine reference offset does not take effect until the next machine reference run.

Machine zero speed and acceleration

With these values you can define the motion profile of the machine zero run.

4.1.6.3 Travel Limit Settings

Software end limits

The error reaction when reaching the software end limits can be set:
Possible settings for the error reaction are:

- No response
- Downramp / stop
- Downramp / stromlos schalten (standard settings)

If "no reaction" was set, no software limits must be entered.

Software end limits:

The travel range is defined via the negative and positive end limits.

1: negative end limit
2: positive end limit

Software end limit in absolute operating mode

The positioning is restricted to the range between the travel limits. A positioning order aiming at a target outside the travel range is not executed.

1: negative end limit
2: positive end limit
The reference is the position reference point that was defined with the machine reference and the machine reference offset.

Software end limits in reset mode

The reset mode does not support software end limits

Error when disregarding the software end limits

Software end limit in continuous mode

Each individual positioning is confined within the travel limits.
A positioning order aiming at a target outside the software end limits is not executed.
The reference is the respective current position.
A software end limit error is triggered, if the position value exceeds an end limit. For this, the position setpoint value is evaluated in energized state; in currentless state, the actual position value is evaluated.

Hysteresis in disabled state:

If the axis stands currentless at an end limit, another error may be reported due to position jitter after acknowledging the end limit error. To avoid this, a hysteresis surrounding the end limits was integrated (size corresponds to the size of the positioning window).
Only if the distance between axis and the end limits was larger than the positioning window, another end limit error will be detected

Error codes (see on page 335) of the end limit errors:
0×7323 Error when disregarding the positive software end limit.
0×7324 Error when disregarding the negative software end limit.

Activating / deactivating the end limit error:

In the C3 ServoManager under configuration: End limits, the error can be (de)activated.
For IEC-programmable devices with the "C3_ErrorMask" module.
Behavior after the system is turned on

The end limits are not active after switching on. The end limits do not refer to the position reference point until after a machine reference run.
During homing run the end limits are not monitored.
With a Multiturn encoder or with active Multiturn emulation, the limit is valid immediately after switching on.

Behavior outside the

 travel range
1. If the software end limit errors are deactivated, all movements are possible.

2. If the software end limit errors are activated:

After disregarding the software end limits, an error is triggered. First of all, this error must be acknowledged.
Then a direction block is activated: only motion commands in the direction of the travel range are executed. These will not trigger another error.
Motion commands inciting a movement in the opposite direction of the travel range are blocked and will trigger another error.

1: negative end limit
2: positive end limit

Notes on special feedback systems (Feedback F12)

During automatic commutation, the end limit monitoring is deactivated!

Behavior with software end limits of a referenced axis

	Position within target outside	Position outside target outside and aiming in the opposite direction of the travel range	Position outside target within and aiming in the direction of the travel range
JOG +/-	\bullet Positioning up to the end limits - No Error	\bullet No positioning - No Error	- Positioning
MoveAbs, MoveRel, RegSearch, RegMove	- No positioning - Error	- No positioning - Error	- Positioning
Gearing	\bullet Positioning up to the end limits - Error	- No positioning - Error	- No positioning - Error
Velocity	\bullet Positioning up to the end limits - Error	- No positioning - Error	- Positioning

Hardware end limits

The error reaction when reaching the hardware end limits can be set:
Possible settings for the error reaction are:

- No response
- Downramp / stop
- Downramp / stromlos schalten (standard settings)

Hardware end limits are realized with the aid of end switches.
These are connected to $\mathrm{X} 12 / 12$ (input 5) and $\mathrm{X} 12 / 13$ (input 6) and can be (de)activated separately in the C3 ServoManager under Configuration: End limits. After a limit switch has been detected, the drive decelerates with the ramp values set for errors (error code $0 \times 54 \mathrm{~A} 0$ at X12/12 active, $0 \times 54 \mathrm{~A} 1$ at X12/13 active) and the motor is switched to currentless.
Please make sure that after the detection of the end switch there is enough travel path left up to the limit stop.

1: Limit switch E5 (X12/12)
2: Limit switch E6 (X12/13)
3: Limit switch position E5 (X12/12)
4: Limit switch position E6 (X12/13)
The assignment of the limit switches (see on page 129) can be changed!

Please note: The limit switches must be positioned so that they cannot be released towards the side to be limited.

Limit switch / direction reversal switch
 Behavior in the case of an active limit switch

Change assignment of direction reversal / limit switch is activated trigger a limit switch error.

The error can be acknowledged with activated limit switch.
The drive can then be moved out of the end switch range with a normal positioning. The direction of the movement is verified in the event of fixed I/O assignment. Only the direction towards the travel range is allowed.

Debouncing: Limit switch, machine zero and input 0

A majority gate is used for debouncing.
The signal is sampled every 0.5 ms
The debounce time determines the number of scans the majority gate will perform. If the level of more than half of the signals was changed, the internal status will change.
The debounce time can be set in the configuration wizard within the range of 0 ... 20 ms .
The value 0 deactivates the debouncing.
If the debouncing time is stated, the input 10 can be debounced as well (checkbox below).

4.1.6.4 Change assignment direction reversal / limit switches

If this function is not activated, the direction reversal / end switches are assigned as follows:
Direction reversal / limit switch on I5 (X12/12): negative side of the travel range Direction reversal /limit switch on I6 (X12/13): positive side of the travel range

If this function is activated, the direction reversal / limit switches are assigned as follows:
Direction reversal / limit switch on $\mathbf{I 5}$ (X12/12): positive side of the travel range Direction reversal / limit switch on I6 (X12/13): negative side of the travel range

4.1.6.5 Change initiator logic

The initiator logic of the limit switches (this does also apply for the direction reversal switches) and the machine zero initiator can be changed separately.

- Limit switch E5 low active
- Limit switch E6 low active
- Home switch E7 low active

In the basic settings the inversion is deactivated, so that the signals are "high active".

With this setting the inputs I 5 to I 7 can even be switched within their logic, if they are not used as direction reversal/limit switches or machine zero.

4.1.7. Defining jerk / ramps

In this chapter you can read about:

Speed for positioning and velocity control.. 130
Acceleration for positioning and velocity control.. 130
Acceleration / deceleration for positioning.. 130
Jerk limit for positioning .. 130
Ramp upon error and de-energize ... 131
Jerk for STOP, MANUAL and error.. 132

4.1.7.1 Speed for positioning and velocity control

Standard speed for all positionings and motion functions.
The value can be changed during operation via the bus or via the motion sets. This setting is not relevant for the "rotation speed" operating mode.

4.1.7.2 Acceleration for positioning and velocity control

Standard acceleration for all positionings and motion functions.
The value can be changed during operation via the bus or via the motion sets.

4.1.7.3 Acceleration / deceleration for positioning

Standard deceleration for all positionings and motion functions.
The value can be changed during operation via the bus or via the motion sets. If " 0 " is entered, the acceleration value is accepted as deceleration.

4.1.7.4 Jerk limit for positioning

Standard jerk for all positionings and motion functions.
The value can be changed during operation via the bus or via the motion sets.
In the operating modes:

- Speed control
- Velocity and
- Gearing
the jerk is not limited.
Description of jerk
Jerk
The jerk (marked with " 4 " in the drawing below) describes the change in acceleration (derivation of the acceleration)
The maximum change in acceleration is limited via the jerk limitation.
A motion process generally starts from a standstill, accelerates constantly at the specified acceleration to then move at the selected speed to the target position. The drive is brought to a stop before the target position with the delay that has been set in such a manner as to come to a complete stop at the target position. To reach the set acceleration and deceleration, the drive must change the acceleration (from 0 to the set value or from the set value to 0).
This change in speed is limited by the maximum jerk.

Without jerk According to VDI2143 the jerk is defined (other than here) as the jump in according to acceleration (infinite value of the jerk function).

VDI2143 This means that positionings with Compax3 are without jerk according to VDI2143, as the value of the jerk function is limited.

Motion sequence

1: Position
2: Speed
3: Acceleration
4: Jerk
High changes in acceleration (high jerks) often have negative effects on the mechanical systems involved. There is a danger that mechanical resonance points will be excited or that impacts will be caused by existing mechanical slack points. You can reduce these problems to a minimum by specifying the maximum jerk.

Jerk

Unit: Unit/s 3	Range: $0 \ldots 10000000$	Standard value: 1000000

STOP delay

After a STOP signal, the drive applies the brakes with the delay that is set (2).

Please observe:

The configured STOP ramp is limited. The STOP ramp will not be smaller than the deceleration set in the last motion set.

NO STOP: CW. 3 = "0" (disable operation), CW. 4 = "0" (STOP) or Input I1 (X12/7)

4.1.7.5 Ramp upon error and de-energize

Ramp (delay) upon error and "De-energize"

3: Deceleration upon error (malfunction) (ZSW. $3=$ "1"), OUT1 (CW. $0=$ " 0 ") and OUT3 (CW. 2 = "0")

Please observe:

The configured error ramp is limited. The error ramp will not be smaller than the deceleration set in the last motion set.

Manual acceleration/deceleration and speed control
You can set the motion profile for moving with JOG+ or JOG- here.

1: Manual acceleration / Deceleration
2: Manual speed control
+: Jog 1 ON (CW. $8=$ "1") or I2 (X12/8)
-: Jog 2 ON (CW. 9 ="1") or I3 (X12/9)

4.1.7.6 Jerk for STOP, MANUAL and error

The jerk set here applies for:

- the STOP ramp
- Manual motion
- The ramp for the machine reference run

Description of jerk (see on page 130)
Jerk

Unit: Unit/s 3	Range: $0 \ldots 10000000$	Standard value: 1000000

4.1.8. Limit and monitoring settings

In this chapter you can read about:
Positioning window - Position reached.. 133
Maximum operating speed.. 134

4.1.8.1 Current (Torque) Limit

The current required by the speed controller is limited to the current limit.

4.1.8.2 Positioning window - Position reached

Position reached indicates that the target position is located within the position window.
In addition to the position window, a position window time is supported. If the actual position goes inside the position window, the position window time is started. If the actual position is still inside the position window after the position window time, "Position reached" is set.
If the actual position leaves the position window within the position window time, the position window time is started again.
When the actual position leaves the position window with Position reached = "1", Position reached is immediately reset to " 0 ".
Position monitoring is active even if the position leaves the position window because of measures taken externally.

1: Position Window
2: In Position Window Time
3: Setpoint position reached (state / status word 1 Bit $10=" 1 ")$ and O 1 (X12/3)

Linkage to the setpoint value

The signal "position reached" can be linked to the setpoint value.
In addition, the internal setpoint value generation is evaluated.
It applies: The positioning window is only evaluated with a constant internal setpoint value.

Position reached

Geavittg Signal "position reached" monitors synchronicity.
RegSearch / Signal §position reached" is set if
RegMove \bullet RegSearch was terminated without a reg being found or

- Reg was found and RegMove executed.

Velocity Signal "position reached" turns into "velocity reached".
STOP Signal "position reached" shows that the drive is at a standstill.

4.1.8.3 Following error limit

The error reaction upon a following error can be set:
Possible settings for the error reaction are:

- No response
- Downramp / stop
- Downramp / stromlos schalten (standard settings)

The following error is a dynamic error.
The dynamic difference between the setpoint position and the actual position during a positioning is called the following error. Do not confuse this with the static difference which is always 0 ; the target position is always reached exactly.

The change of position over time can be specified exactly using the parameters jerk, acceleration and speed. The integrated Setpoint value generator calculates the course of the target position. Because of the delay in the feedback loop, the actual position does not follow the target position exactly. This difference is referred to as the following error.

Disadvantages

caused by a

following error

Error message

When working with a number of servo drives (for example Master controller and slave controller), following errors lead to problems due to the dynamic position differences, and a large following error can lead to positioning overshoot.

If the following error exceeds the specified following error limit, the "following error time" then expires. If the following error is even greater than the following error limit at the end of the following error time, an error is reported.
If the following error falls short of the following error limit, a new following error time is then started.

Minimizing the following error

The following error can be minimized with the help of the extended (advanced) control parameters, in particular with the feed forward parameters.

1: Following error limit
2: Following Error Time
ERROR: Malfunction (state - / status word 1 Bit 3) and O0 (X12/2)
ACKN: Control word 1 Bit 7 or IO (X12/6)

4.1.8.4 Maximum operating speed

The speed limitation is deduced from the maximum operating speed. In order to ensure control margins, the speed is limited to a higher value.
The speed setpoint value is actively limited to 1.1 times the given value.
If the speed actual value exceeds the preset maximum speed by 21% (="switching off limit speed"), error 0×7310 is triggered.

4.1.9. Encoder simulation

You can make use of a permanently integrated encoder simulation feature to make the actual position value available to additional servo drives or other automation components.

Position of zero pulse:

Before R09-40 the zero pulse is coupled fixedly to the motor zero point (zero crossing of the feedback position without absolute reference). This resulted in a unequivocal and repeatable zero pulse position at all feedback devices (Resolver, SinCos(R), EnDat, analogue Hallsensors, at C3Fluid: SSI-feedback system, analogue feedback).
With R09-40 the zero pulse is adjustable in the range of -180... 180 (object 0620.6) - furthermore teaching of the zero pulse for the actual motor position is possible by writing 0620.7 with -1 or by entering ":TEACH_ENCSIM_ZERO" in the entry field of the optimization window.

Zero pulse with multiple pole feedback sensor:

With these feedback systems the simulation does not refer to the mechanical motor position but to the feedback position, this means the correct quantity of A/B pulses is put out to a motor revolution respectively to a motor pitch, however the zero pulse output multiply occurs within one motor revolution respectively within one motor pitch. (Quantity=figure pair of feedback pole=feedback pole figure/2).

At linear feedback systems 50 mm correspond to a virtual motor revolution.

Caution! *The encoder simulation (A/B) is not possible at the same time as the encoder

 input, der SSI-Schnittstelle resp. the step/direction input.The same interface is used here.

- A direction reversal configured in the C3 ServoManager does not affect the encoder simulation.
The direction of rotation of the encoder simulation can, however, be changed via the feedback direction in the MotorManager.

Simulated Encoder Output Resolution

Unit: Increments per revolution / pitch	Range: 4-16384	Standard value: 1024
Any resolution can be set Limit frequency: 620 kHz (track A or B) i.e. , with:		
Increments per revolution	max. Velocity	
1024	36000 rpm	
4096	9000 rpm	
16384	2250 rpm	

4.1.9.1 Encoder bypass with Feedback module F12 (for direct drives)

If the feedback module F12 is used, the encoder signals can be placed directly (Bypass) to the encoder interface (X11: same assignment as encoder simulation) for further use. Sine/Cosine signals are directly converted into encoder signals, however no additional zero pulse is generated; an available zero pulse will be transmitted.
The advantage is, that the limit frequency** is 5 MHz instead of 620 kHz (track A or $B)$.
The direction of rotation is only defined via the encoder wiring; a direction inversion configured in the C3 ServoManager does not have any consequence.
** Limit frequency $=1 \mathrm{MHz}$ for Compax3M (higher bandwidths on request)

4.1.10. I/O Assignment

- For intra-device inputs IO .. I3 as well as the outputs O0 ... O3 you can choose between fixed or free assignment (see below).
- Control via Profibus does not require an M option (M10 / M12).
- If an M option is available, 12 inputs/outputs (ports) are freely assignable. These can be configured as inputs or outputs by groups of four and be activated or read via Object 121.2 and Object 133.3.
- The signal inputs $14 \ldots$ I7 are fixedly assigned If the respective functions are not needed, these inputs can also be used for control.
I5 and I6 can, for example, be used as free inputs if the limit switch function is deactivated.

Assignment of the intra-device inputs and outputs

$\begin{array}{\|l\|} \hline \text { Pin } \\ \text { X12 } \end{array}$	Input / Output	High density/Sub D	
1	0	+24 V DC output (max. 400mA)	
2	O0	No error	Only for "fixed assignment"
3	O1	Position / speed / gear synchronization attained (max. 100 mA)	
4	O 2	Power stage without current (max. 100 mA)	Functions are available, if "Fixed assignment" was selected for the I/O assignment in the configuration wizard
5	O3	Axis energized with a setpoint of 0 (max. 100 mA)	
6	10="1":	Quit (positive edge) / activate the axis	
	10="0"	Axis disable with delay	
7	11	no Stop	
8	12	JOG +	
9	13	JOG -	
10	14	Reg input	
11	1	24 V input for the digital outputs Pins 2 to 5	
12	15	Limit switch 1	
13	16	Limit switch 2	
14	17	Machine zero initiator	
15	0	GND24V	

All inputs and outputs have 24 V level.
Maximum capacitive loading of the outputs: 30nF (max. 2 Compax3 inputs can be connected)
Input-/Output extension
Optimization window display

The display of the digital inputs in the optimization window of the C3 ServoManager does not correspond to the physical status ($24 \mathrm{Volt}=$ on, $0 \mathrm{Volt}=\mathrm{off}$) but to the logic status: if the function of an input or output is inverted (e.g. limit switch, negatively switching), the corresponding display (LED symbol in the optimization window) is OFF with 24 Volts at the input and ON with 0 Volts at the input.

Functions I2: Manual+ and I3: Manual- only with control word 1 bit $10=" 0 "$ (see below)!

Note on the assignment of $10, \ldots \mathrm{I} 3$ and $00, \ldots \mathrm{O}$

For intra-device inputs 10 .. 13 as well as the outputs O0 ... O3 you can choose between fixed or free assignment.

With fixed assignment of the intra-device inputs $10 \ldots$... 3 , the respective functions can either be triggered via the inputs or via Profibus It applies:

With "guiding via interface" (control word 1 bit $10=$ "1")

- Energize motor I0 ="1" AND Control word 1 Bit 2 ="1" (OUT3)
- Ackn is triggered via control word 1 bit 7 - ackn via 10 is not possible.
- Stop is active, if $11=$ " 0 " OR control word 1 Bit $4=" 0$ " (Stop)
- Manual+ and Manual- Inputs I2, I3 do not have a function.

With " No guiding via interface" (control word 1 bit $10=$ "0")

Control word is not effective:

- Energize motor / ackn: $10=11 "$
- Stop is active, if $\mathrm{I}=$ = 0 "
- Manual+ and Manual- via Inputs I2, I3.

Status word

-The status word is always updated

- O0 corresponds to status word 1 Bit 3
- O1 corresponds to status word 1 bit 10
- O3 corresponds to status SB1 /SC1

4.1.11. Position mode in reset operation

In this chapter you can read about:
In reset operation (activated by the configured reset distance), additional positioning functions are possible for absolute positionings (can be set under configuration in the "Positioning options / positioning profiles" window only in bus mode "Positioning" or "Profile selection"):

All directions	Standard positioning mode
Positive direction	Positioning only in positive direction
Shortest path	Positioning on the shortest path
Negative direction	Positioning only in negative direction
Actual direction	Positioning by keeping the actual direction of travel

Dynamic positioning

In dynamic positioning, a decision concerning the positioning travel is not taken on the basis of the actual position, but on the basis of the braking position resulting from the motion parameters.

Please observe: \quad In the event of positioning specifications below zero and higher than or equal to the reset distance, this function is deactivated.
The positioning target must for instance be in the range between $0 . .359 .999999^{\circ}$ for a reset distance of 360°.

- The positioning functions are neither effective in test movements nor in an automatic positioning after homing travel (if this was not deactivated in the configuration).
- In the event of "shortest path", the motion is not defined for a positioning by a travel of half the reset distance.

In the help file you can find examples for the functioning of the individual positioning modes.

4.1.12. Reg-related positioning / defining ignore zone

These settings are only required in connection with the function "reg-related positioning (see on page 143)".
Within the reg window a reg signal will be ignored.
The reg window is defined by

- Beginning of the ignore zone and
- End of the ignore zone

Beginning and end of the ignore zone are absolute values and therefore are also valid with negative position values.
This reg window is valid for all reg position sets.

Allow higher deceleration for RegMove

If the deceleration set in the RegMove motion set is too low, the target position is not reached. Compax3 reports error (see on page 146).
By allowing for a higher deceleration, Compax3 sets the jerk and the deceleration so that the target is reached without direction reversal.
Function:

4.1.13. Write into set table

The motion sets are stored in a set table.
The table rows define always one motion set, in the columns the respective motion parameters of a motion set are stored.

	Motion parameters				
Machine reference run					
Set 1					
Set 2					
\ldots					
Set 31					

Exact description (see on page 310).
31 motion sets are possible.
The motion set to be executed is selected via Status word 2.
For the motion sets different motion functions with different motion parameters are available:

- Empty: empty motion set
- MoveAbs (see on absolute positioning page 142):
- MoveRel (see on relative Positioning page 142):
- Gearing (see on electronic gearbox page 147):
\bullet RegSearch (see Registration mark-related positioning on page 143): (uses 2 motion sets: RegSearch and RegMove)
- Velocity (see on Velocity control page 149):
- Stop: Stop movement

For each motion set you can define programmable status bits (PSBs), which will then be put out after the termination of the motion set.

Homing run A start signal at address $=0$ (motion set 0) triggers a machine zero run.

4.1.13.1 Programmable status bits (PSBs)

The successful execution of a motion set can be queried via the PSBs. PSBs: Bit 12, 13 and 14 of status word 2.

Definition of the pattern:

The settings for the PSBs are made in the respective motion set
You can set 3 assignments for the respective bits:
X : no change Output / Bit is not influenced
0 : Inactive Output / Bit is set to 0
1: Active Output / Bit is set to 1 resp. 24VDC
Storage of the PSBs (see on page 310).

4.1.14. Motion functions

In this chapter you can read about:
MoveAbs and MoveRel... 142
Reg-related positioning (RegSearch, RegMove)... 143
Electronic gearbox (Gearing) .. 147
Speed specification (Velocity)... 149
Stop command (Stop).. 149

4.1.14.1 MoveAbs and MoveRel

A motion set defines a complete motion with all settable parameters.

1: Target position
2: Travel speed
3: Maximum Acceleration
4: Maximum deceleration
5: Maximum Jerk (see on page 130)

Motion functions

MoveAbs: Absolute positioning.
MoveRel: Relative positioning

Target position / distance

Target position of the chosen unit of measure.
Distance with MoveRel

Speed

Speed in length unit/s

Acceleration

Deceleration

Acceleration in unit/s ${ }^{2}$

Deceleration in unit/s ${ }^{2}$

Jerk

Jerk in unit/s ${ }^{3}$

You can optimize the motion profile data with the "ProfilViewer" (see on page 269) software too!!

4.1.14.2 Reg-related positioning (RegSearch, RegMove)
 For registration mark-related positioning, 2 motions are defined.

RegSearch Search movements: Relative Positioning in order to search for an external signal of a reg
This may, for example, be a reg on a product.
RegMove The external signal interrupts the search movement and the second movement by the predefined offset follows without transition. The drive comes to a standstill at the position of the mark signal + the configured offset.

Accuracy of the reg detection : <1 $\mu \mathrm{s}$

Please note:
The reg restriction window is the same for all reg motion sets!

Example 1: Reg comes after the reg restriction window

Example 2: Reg within the reg restriction window

Start	Start signal for reg positioning (Control word 1 Bit 6)
RegSearch:	Positioning for reg search
RegMove:	Positioning according to reg
Startlgnore:	Reg ignore window: (see on page 139) Beginning of the ignore zone
Stoplgnore:	Reg ignore window: End of the ignore zone
Reg:	Reg signal (I4 on X12/10)
Regf:	Signal: Reg detected
	(Status word 1 Bit 15)
POS:	Signal: Position reached
	(Output O1: X12/3 or status word 1 Bit 10)
$\mathbf{1}$	Programmable status bits of RegSearch (only for positioning with set selection)
$\mathbf{2}$	Programmable status bits of RegMove (only for positioning with set selection)

The reg is ignored; the drive moves to the target position from the RegSearch motion set.

Example 3: Reg is missing or comes after termination of the RegSearch motion set

The drive moves to the target position from the RegSearch motion set

Example 4: Reg comes before the reg restriction window

As from the mark, the drive moves on relatively by the offset defined in RegMove and then stops at that position (same behavior as in example 1).

Example 5: The registration mark comes after the reg restriction window, registration mark can, however, not be reached without direction reversal

Start	Start signal for reg positioning (Control word 1 Bit 6)
RegSearch:	Positioning for reg search
RegMove:	Positioning according to reg
Startlgnore:	Reg ignore window: (see on page 139) Beginning of the ignore zone
Stoplgnore:	Reg ignore window: End of the ignore zone
Reg:	Reg signal (I4 on X12/10)
Regf:	Signal: Reg detected
	(Status word 1 Bit 15)
POS:	Signal: Position reached
	(Output O1: X12/3 or status word 1 Bit 10)
$\mathbf{1}$	Programmable status bits of RegSearch (only for positioning with set selection)
$\mathbf{2}$	Programmable status bits of RegMove (only for positioning with set selection)
Error	Output A0: X12/2 or status word 1 Bit 3

Position reached can be activated for a short period, if the position window was not linked to the command value.

With "Allow higher deceleration for RegMove (see on page 139)", Compax3 sets the required deceleration.

4.1.14.3 Electronic gearbox (Gearing)

The motion function "Gearing" (electronic gearbox) moves Compax3 synchronously with a leading axis.
A $1: 1$ synchronism or any transmission ratio can be selected via the gear factor.
A negative sign - which means reversal of direction - is permitted.
Function: Electronic gearbox (Gearing)

The position of a master axis can be detected via:
-+/-10V analog input

- Step / direction input (X11/6, 7, 8, 12)
- the encoder input (X11/6, 7, 8, 12) or
\bullet HEDA, if Compax3 is used as master drive.
The master signal detection is configured under synchronization.

Settings of the "Gearing" motion function

Gearing numerator / Transmission ratio slave / master
Gearing The transmission ratio (gear factor) can be entered in "Gearing numerator" (at denominator: "Gearing denominator" = 1).

You will obtain an exact image of a non-integral transmission ratio by entering the value integrally as a fraction with numerator (integral) and denominator (integral). Long-term drifts can only be avoided by using integral values.
That is:

$\frac{\text { Slave }}{\text { Master }}=\frac{$| Gearing |
| :--- |
| numerator |}{| Gearing |
| :--- |
| denominator |}

Acceleration Here you can define the acceleration for the drive to reach the desired synchronism.

Dynamic change of You can switch dynamically between 2 gearing motion sets with different gear the gear factor factors. The set acceleration counts as deceleration if the gear factor is reduced.

Dynamic switching between the gearing motion function and positioning functions (MoveAbs, MoveRel, RegSearch) is possible.

Synchronicity: With the "Gear reached" signal(Output O1: X12/3 or status word 1 Bit 10), the reaching of the synchronicity is displayed.
The signal "Gear reached" is reset if the synchronicity is exited. The programmable status bits (PSBs) are activated via the signal "Gear reached".

Limiting effects If the synchronicity is lost temporarily due to limitations, the resulting position difference is made up afterwards.

Note: Jerk is not limited.

4.1.14.4 Speed specification (Velocity)

This motion function is defined by velocity and acceleration.
An active motion set is interrupted by:

- Stop or
- Start of a different set.

As soon as the setpoint speed is reached, "speed reached" (Output O1: X12/3 or status word 1 Bit 10) as well as the defined status bits (PSBs) are activated.

Note: Position control is active, i.e. the following error caused by limitations will be made up. Jerk is not limited.

4.1.14.5 Stop command (Stop)

The Stop set interrupts the current motion set (Stop with interruption).
This motion function is defined by the deceleration and the jerk of the drive when coming to a standstill.
As soon as the drive is at standstill "position reached" (Output O1: X12/3 or status word 1 Bit 10) as well as the defined status bits (PSBs) are activated.

Note: The stop command (as motion function) is not effective during the machine zero run.

4.1.15. Error response

Under "configuring: Error reaction" you can change the error reaction for individual errors (see on page 335) (the error no. which can be influenced is displayed).
Possible settings for the error reaction are:

- No response
- Downramp / stop
- Downramp / stromlos schalten (standard settings)

Note on Compax3H:
The error reaction upon the "low voltage DC" error (0×3222) is fixed to "downramp/deenergize" for Compax3H.

4.1.16. Configuration name / comments

Here you can name the current configuration as well as write a comment. Then you can download the configuration settings or, in T30 or T40 devices, perform a complete Download (with IEC program and curve).

Caution!

Deactivate the drive before downloading the configuration software! Please note!
Incorrect configuration settings entail danger when activating the drive. Therefore take special safety precautions to protect the travel range of the system.

[^3]
4.1.17. Dynamic positioning

You can change over to a new motion set during a positioning process. All motion parameters of the new data record become valid

Hint The new motion set address must not equal 0 .
Example: MoveAbs (Target position POS1) is interrupted by a new MoveAbs with target position (POS 5)

The following dynamic transitions are supported:

Motion function in progress	Possible dynamic change to the motion function:
MoveAbs, MoveRel, RegSearch, RegMove, Velocity	MoveAbs, MoveRel, Velocity, RegSearch, Gearing
Gearing	MoveAbs, MoveRel, RegSearch, Gearing (other gearing factor)
Stop	-

4.2 Configuring the signal Source

Select signal source for Gearing

4.2.1. \quad Signal source of the load feedback system

Configuration of the load control (see on page 156) (Dual Loop Option)

4.2.2. Select signal source for Gearing

In this chapter you can read about:
Signal source HEDA ... 152
Encoder A/B 5V, step/direction or SSI feedback as signal source..
+/-10V analog speed setpoint value as signal source .. 154

Here the signal source is configured for the motion function "Gearing" (electronic gearbox).
Available are:

Gearing input signal source

- The HEDA real-time bus (M10 or M11 option) directly from a Compax3 master axis
- an encoder signal A/B 5V
- a step/direction signal 5V
- a velocity as analog value +/-10V
-SSI feedback (X11)
HEDA operating mode: HEDA-Master

Under signal source gearing "not configured" must be set!

If an existing HEDA option (M10 or M11) is not used as signal source, you can transmit the following signals for a slave axis via HEDA (HEDA-Master) :

- Setpoint position value (Object 2000.1)
- Actual position (Object 2200.2)
- Setpoint position value from virtual Master (object 2000.2)
- External position value (Object 2020.1)

Signal read into the master via <Analog channel_C3_C3F>, Encoder input or step/direction input.
Principle:

Step / Direction

Attention in the case of a configuration download with master-slave coupling (electronic gearbox, cam)
Switch Compax3 to currentless before starting the configuration download: Master and Slave axis

4.2.2.1 Signal source HEDA

Signal source is a Compax3 master axis in which the HEDA operating mode "HEDA master" is set.
Please enter besides the desired error reaction an individual HEDA axis address in the range from 1 ... 32.

Here the dimensional reference to the master position is established.
Compax3 T30 / T40
Compax3 T11 / T30 / T40

The position value are transferred via channel 1.

1) Select the position value to be transferred on the Compax3 HEDA-Master (Target position value, actual position value, external position value or position value of the virtual Master)).
2)By specifying the source under "Configuration: Configuration of the signal source:HEDA", most of the reference values are pre-set.

- Standard source

Position value of the rotative drives
Travel path per motor revolution master axis numerator With denominator $=1$ the value can be entered directly. Long-term drift can be avoided by entering non-integral values integrally as a fraction with numerator and denominator.

- Position value of virtual master of Compax3 T40
- Position value of linear motor (mm)

Please enter pitch length in mm

- Position value of linear motor (inch)

Please enter pitch length in inch

- Position value of hydraulic cylinder - linear feedback (metric) of Compax3F
- Position value of hydraulic cylinder - linear feedback (imperial) of Compax3F
- Position value of hydraulic cylinder - rotary feedback of Compax3F

1) Select the position value to be transferred on the Compax 3 HEDA-Master (Target position value, actual position value, external position value or position value of the virtual Master)).
If required the direction of rotation of the master axis read in can be changed.

4.2.2.2 Encoder A/B 5V, step/direction or SSI feedback as signal source

Caution! *The encoder simulation (A / B) is not possible at the same time as the encoder input, der SSI-Schnittstelle resp. the step/direction input. The same interface is used here.

- A direction reversal configured in the C3 ServoManager does not affect the encoder simulation.
The direction of rotation of the encoder simulation can, however, be changed via the feedback direction in the MotorManager.
The dimensional reference to the master is established via the following settings:
- Travel path per motor revolution (or pitch for linear motors) master axis numerator With denominator $=1$ the value can be entered directly.
Long-term drift can be avoided by entering non-integral values integrally as a fraction with numerator and denominator.
- Travel per motor revolution (or pitch of linear motors) master axis denominator
- Increments per revolution of the master axis

If required the direction of rotation of the master axis read in can be changed.

Example: Electronic gearbox with position detection via encoder

Reference to master axis	The reference to the master axis is established via the increments per revolution and the travel path per revolution of the master axis (corresponds to the circumference of the measuring wheel). That is:
	Master_I Travel Distance per Master Axis revolution
	$\text { MasterPos }=\frac{\text { I_M }}{} * \frac{\begin{array}{l} \text { Travel Distance per Master Axis revolution - } \\ \text { Denominator } \end{array}}{(1)}$
	MasterPos: Master Position
	Master_I: master increments read in
	I_M: Increments per revolution of the master axis
External signal source	Encoder with 1024 increments per master revolution and a circumference of the measuring wheel of 40 mm .
Settings:	Travel path per revolution of the master axis numerator $=40$
	Travel path per revolution of the master axis denominator $=1$
	Increments per revolution of the master axis = 1024
Configuration wizard:	Reference system of Slave axis: Unit of measure [mm]
	Travel path per revolution numerator $=1$
	Travel path per revolution denominator $=1$
Gearing:	Gearing numerator $=2$
	Gearing denominator $=1$

This results in the following interrelations:

If the measuring wheel moves by 40 mm (1 master revolution), the slave axis will move by 80 mm .

Slave unit $=$ MasterPos * $\quad \frac{$\begin{tabular}{l}
Gearing

numerator

}{

Gearing

denominator
\end{tabular}} (2)

(1) set into (2) and with numerical values results with 1024 increments read in (=1 Master revolution):

Slave unit $=1024$ *

* $\frac{2}{1}=80 \mathrm{~mm}$

$$
\text { Master }- \text { Position }=+40 \mathrm{~mm}=>\text { Slave }- \text { Position }=+80 \mathrm{~mm}
$$

Structure:

4.2.2.3 +/-10V analog speed setpoint value as signal source

Via Analogkanal 0 ($\mathrm{X} 11 / 9$ und $\mathrm{X} 11 / 11$) the speed of the master is read in.
From this value a position is internally derived, from which then the motion of the drive is derived with reference to the transmission ratio.
Without limitation effect applies:
Velocity of the master * (Gearing numerator / gearing denominator) = velocity of the slave

Signal processing of the analog input 0

B: Continuative structure image (see on page 227)
The reference to the master is established with the velocity at 10 V .
If required the direction of rotation of the master axis read in can be changed.

Time frame signal source master

Averaging and a following filter (interpolation) can help to avoid steps caused by discrete signals.
If the external signal is analog, there is no need to enter a value here (Value = 0). For discrete signals e.g. from a PLC, the scanning time (or cycle time) of the signal source is entered.

This function is only available if the analog interface $+/-10 \mathrm{~V}$ is used!

4.3 Load control

In this chapter you can read about:

Configuration of load control ... 157
Error: Position difference between load mounted and motor feedback too high 158
Load control signal image
158
The load control can be activated via an additional feedback system for the acquisition of the actual position of the load.
This helps for example compensate the slip between material and roller or non-linearities of the mechanic parts.
The load position is set to the demand position.

Please note:

- This function is not available in the C3I10T10 and C3I11T11 devices.
- As a sensor signal, Encoder (see on page 402) with A/B track, Step/Direction signal or SSI - sensor is supported.
- This controller structure improves the stationary precision at the load after the decay of all control movements.
An increase of the dynamic precision (faster transient response) can in general not be reached with the "load control" structure variant.

Notes on the SSI sensor

- With Multiturn: Number of sensor rotations with absolute reference
-Word length: Gives the telegram length of the sensor.
- Baud rate/step: Max. Transmission rate of the path measurement system.
- Gray code: Sensor gray code coded yes/no (if no binary coded).

Note:

The absolute position is not evaluated!
It is available in the objects 680.24 (load position) and 680.25 (master position) (C3T30, C3T40).

General requirements for supported SSI feedbacks

- Baud rate: 350k ... 5MBaud
- Word length: 8 ... 32 Bit
- Binary or gray code (start value $=0$)
- Initialization time after PowerOn: < 1,1s
- Signal layout:

The most significant bit must be transmitted the first!
Caution! Feedback systems, transmitting data containing error or status bits are not supported!

- Examples of supported SSI feedback systems:
- IVO / GA241 SSI;
- Thalheim / ATD 6S A 4 Y1;
- Hübner Berlin / AMG75;
- Stegmann / ATM60 \& ATM90;
- Inducoder / SingleTurn: EAS57 \& Multiturn: EAMS57

4.3.1. Configuration of load control

Configuration in the "configure signal source" wizard under "load feedback system":

-The selection of the feedback signal activates the acquisition and the signals are available as status values (see on page 158).

- Rotatory or linear feedback systems are supported.
- Input values for rotatory feedback systems:
- Increments per feedback revolution (physical, without quadruplication)
- Direction reversal

Attention!With wrong sense of direction and active load control, you will get a positive feedback; the motor will accelerate in an uncontrolled way
Solution: Before the load control is activated, the signals must be checked with the aid of the status values (see on page 158) and secured against wrong sense of direction by configuring a "maximum difference to motor position" (O410.6).

- Load travel per feedback revolution: Is used for establishing the measure reference between load- and motor position.
The value can be configured very precisely by entering numerator and denominator.
- Input values for linear feedback system
- Feedback resolution (physical, without quadruplication) Position difference, which corresponds to a cycle duration of the feedback signal.
- Direction reversal

Attention!With wrong sense of direction and active load control, you will get a positive feedback; the motor will accelerate in an uncontrolled way Solution: Before the load control is activated, the signals must be checked with the aid of the status values (see on page 158) and secured against wrong sense of direction by configuring a "maximum difference to motor position" (O410.6).

- Scaling factor for an additional adaptation of the feedback signal (is normally not required = 1)
- Maximum difference tot he motor position

Upon exceeding this value, Compax3 will report error 7385hex (see on page 158) (29573dec)

- Intervention limitation (O2201.13 in \% of the reference velocity or reference speed);
only active with position controller I component switched off (O2200.25=0) You can use this specification in order to limit position correction intervention, i.e. to limit the velocity correction factor resulting from the position difference. This can be especially sensible during the acceleration phase, if the material slips because of too high corrective velocities.
Activate / Deactivate load control

Attention

The load control is immediately active after the configuration download! Please do only activate after checking the load position signal (scaling, direction, value).

Alignment of the load control:

There is an Alignment of the position values of motor and load under the following operating conditions (Load position = Motor position):

- During a Machine zero run the load control is deactivated until the position value 0 (defined via the machine zero offset) was approached.
Then an alignment of the position values is performed and the load control is activated.
- After switching on Compax3.
- When writing "1" into object 2201.2
-When activating the load control.

Continuous mode

In continuous operation (object 1111.8 <> 0) an alignment of the position values of motor and load (load position = motor position) takes place upon each new positioning command.
Application: e.g. roller feed

4.3.2. Error: Position difference between load mounted and motor feedback too high

The (unfiltered) position difference between motor feedback and load feedback has exceeded the "maximum difference to motor position" value (O410.6)
The load position in the position controller is deactivated.
In order to re-activate the function (after eliminating the cause of the error), you have the following possibilities:

- Activate function in configuration and perform configuration download or enter True (-1) into O2201.1
\bullet Perform Ackn and/or Homing (function becomes effective after homing run).

Caution!

The position difference is aligned to zero when switched on again, i.e. the original position reference is lost. Therefore it is advisable to approach the reference point again in this case (Machine zero run or Homing).

4.3.3. Load control signal image

4.4 Optimization

- Select the entry "Optimization" in the tree.
- Open the optimization window by clicking on the "Optimization Tool" button. In this chapter you can read about:

Optimization window. 159
Scope. 160
Controller optimization 167
Signal filtering with external command value 227
Input simulation 229
Setup mode 230
Load identification. 232
Alignment of the analog inputs 234
C3 ServoSignalAnalyzer 236
ProfileViewer for the optimization of the motion profile 269
Turning the motor holding brake on and off 271

4.4.1 \quad Optimization window

Layout and functions of the optimization window

Segmentation	Functions (TABs)
Window1:	Oscilloscope (see on page 160)

Window 2: Optimization: Controller optimization
-D/A Monitor (see on page 334): Output of status values via 2
analog outputs

- Scope Settings

Window 3:

- Status Display
- Compax3 Error History

Window 4: \quad Status values
-Commissioning: Setup mode (see on page 230) with load identification (see on page 232)

- Parameters for commissioning, test movements (relative \& absolute) and for load identification.

4.4.2. Scope

The integrated oscilloscope function features a 4-channel oscilloscope for the display and measurement of signal images (digital and analog) consisting of a graphic display and a user interface.

Special feature:

In the single mode you can close the ServoManager after the activation of the measurement and disconnect the PC from Compax3 and upload the measurement into the ServoManager later.
In this chapter you can read about:

4.4.2.1 Monitor information

1: Display of the trigger information
2: Display of the operating mode and the zoom setting

- 2a: Green indicates, that a measurement is active (a measurement can be started or stopped by clicking here).
\bullet 2b: Active channel: The active channel can be changed sequentially by clicking here (only with valid signal source).
3: Trigger point for Single and Normal operating mode
4: Channel information: Type of display and trigger setting; choice of the active channel
5: X-DIV: X deviation set
6: Single channel sources

Cursor modes -functions

Depending on the operating mode, different cursor functions are available within the osci monitor.
The functions can be changed sequentially by pressing on the right mouse button.

Cursor Symbol Function

Set Marker 1
the measurement values of the active channel as well as the Y difference to marker 2 are displayed

Set Marker 2

Moff

Delete and hide marker

Move offset of the active channel.
The yellow symbol indicates that the scrolling is active.
Set trigger level and pretrigger

In the ROLL operating mode, marker functions and set trigger level positions are not available.

4.4.2.2 User interface

In this chapter you can read about:
Oscilloscope operating mode switch:... 162
Setting the time basis XDIV ... 162
Settings for channels $1 . .4$... 163
Trigger settings... 164
Special functions ... 164
2

1: Operating mode switch (see on page 162) (Single / Normal / Auto / Roll)
2: Setting the time basis (see on page 162)
3: Starting / Stopping the measurement (prerequisites are valid channel sources and if necessary valid trigger settings.)
4: Setting channel (see on page 163) (Channels 1 ...4)
5: Special functions (see on page 164) (Color settings; memorizing settings and measurement values)
6: Loading a measurement from Compax3: in the single mode you can close the ServoManager after the activation of the measurement and disconnect the PC from Compax3 and upload the measurement later.
7: Setting triggering (see on page 164)
8: Copy osci display to clipboard
9: Zoom of the osci display ($1,2,4,8,16$ fold) with the possibility to shift the zoom window (<,>)

Oscilloscope operating mode switch:

Oscilloscope operating mode switch:

```
SINGLE
```

Selection of the desired operating mode: SINGLE, NORMAL; AUTO and ROLL by clicking on this button.
Changing the operating mode is also permitted during a measurement. The current measurement is interrupted and started again with the changed settings.
The following operating modes are possible:
Operating mode Short description
SINGLE Single measurements of 1-4 channels with trigger on a freely selectable channel
NORMAL Like Single, but after each trigger event, the measurement is started again.
AUTO No Trigger. Continuous measuring value recording with the selected scanning time or XDIV setting
ROLL Continuous measuring value recording of 1 .. 4 channels with selectable scanning time and a memory depth of 2000 measuring values per channel.
With SINGLE / NORMAL / AUTO, the measurement is made in Compax3 and is then loaded into the PC and displayed.
With ROLL, the measuring values are loaded into the PC and displayed continuously.

Setting the time basis XDIV

Setting the time basis XDIV

$\mathrm{XDIV}=10 \mathrm{~ms}$

Depending on the selected operating mode, the time basis can be changed via the arrow keys.

For the operating modes SINGLE, NORMAL and AUTO, the following XDIV time settings are possible:

XDIV	Scanning time	Samples DIV/TOTAL	Measuring time
0.5 ms	125 us	$4 / 40$	5 ms
1.0 ms	$125 \mu \mathrm{~s}$	$8 / 80$	10 ms
2.0 ms	$125 \mu \mathrm{~s}$	$16 / 160$	20 ms
5.0 ms	$125 \mu \mathrm{~s}$	$40 / 400$	50 ms
10.0 ms	$125 \mu \mathrm{~s}$	$80 / 800$	100 ms
20.0 ms	1 ms	$20 / 200$	200 ms
50.0 ms	1 ms	$50 / 500$	500 ms
100.0 ms	2 ms	$50 / 500$	1 s
200.0 ms	2.5 ms	$80 / 800$	2 s
500.0 ms	10 ms	$50 / 500$	5 s
1 s	12.50 ms	$80 / 800$	10 s
2 s	25.00 ms	$80 / 800$	20 s
5 s	62.50 ms	$80 / 800$	50 s
10 s	125.00 ms	$80 / 800$	100 s

For the operating ROLL, the following XDIV time settings are possible:
XDIV Scanning time Samples DIV/TOTAL

400 ms	2 ms	$200 / 2000$
1 s	5 ms	$200 / 2000$
2 s	10 ms	$200 / 2000$
4 s	20 ms	$200 / 2000$
10 s	50 ms	$200 / 2000$
20 s	100 ms	$200 / 2000$
40 s	200 ms	$200 / 2000$
100 s	500 ms	$200 / 2000$
200 s	1 s	$200 / 2000$

Changing the time basis is also permitted during an OSCl measuring sequence. This means, however, that the current measurement is interrupted and started again with the changed settings.

Settings for channels $1 . .4$

1: Select channel color

2: Open menu for channel-specific settings

\bullet Resetting channel CH 1..4: All channel settings are deleted.
Please note: Channels can only be filled with sources one after the other. It is, for example, not possible to start a measurement which has only a signal source for channel 2!

- Select channel color:Here you can change the color of the channel.
- Show/hide channel:Hide/show display of the channel.
-Change logic display mask:Mask bits in logic display.
- Autoscale:Calculating YDIV and offset: The program calculates the best settings for YDIV and channel offset in order to display the complete signal values optimally.

3: Set signal source with object name, number and if necessary unit

- Define source: Draw the desired status object with the mouse (drag \& drop) from the "Status value" window (right at the bottom) into this area.
Multiple oscilloscope in Compax3M: select device in addition to the object.

4: Set Channel offset to 0

5: Select channel display (GND, DC, AC, DIG)

-DC:Display of the measurement values with constant component

- AC:Display of the measurement values without constant component
- DIG:Display of the individual bits of an INT signal source.

The displayed bits can be defined via the logic display mask.

- GND:A straight line is drawn on the zero line.

6: Set Y-amplification (YDIV)

Change of the Y amplification YDIV in the stages 1, 2, 5 over all decades.
Arrow upwards increases YDIV, arrow downwards diminishes YDIV.
The standard value is 1 per DIV.
The measurement value of the channel at the cursor cross is displayed.

Trigger settings

Select trigger channel: Buttons C1, C2, C3, C4
Select trigger mode: DC, AC, DG
Selecting the trigger edge: Rising_/ or falling \I_.
The pretrigger as well as the trigger level are set by clicking on the trigger cursor

Special functions

Menu with special oscilloscope functions such as memorizing or loading settings.

Functions:

- Select background color:Adapt background color to personal requirements.
- Select grid color:Adapt grid color to personal requirements.
- Memorize OSCI settings in file: The settings can be memorized in a file on any drive. The file ending is *.OSC.
- The format corresponds to an INI file and is presented in the appendix.
- Open OSCl settings from file:Loading a memorized set of settings. The file ending is *.OSC.
\bullet Memorizing OSCI settings in the project:Up to four sets of OSCI settings can be memorized in the current C3 ServoManager project. .
- Open OSCI settings from project:If settings were memorized in the project, they can be read in again.
- Memorize OSCI measurement in file:Corresponds to memorizing the setting; the measurement values of the measurement are stored in addition. Thus it is possible to memorize and read measurements completely with settings. The file ending is *.OSM.
- Export measure samples to csv file:e.g. for reading into Excel.

4.4.2.3 Example: Setting the Oscilloscope

SINGLE measurement with 2 channels and logic trigger on digital inputs

The order of the steps is not mandatory, but provides a help for better understanding.
As a rule, all settings can be changed during a measurement. This will lead to an automatic interruption of the current measurement and to a re-start of the measurement with the new settings:
Assumption: A test movement in the commissioning mode is active.
1.) Select OSCl operating mode

```
SINGLE
```

2.) Select Time basis XDIV

$X \mathrm{D} \mid \mathrm{V}=50 \mathrm{~ms}$

3.) Select channel 1 signal source digital inputs 120.2 from status tree with the aid of Drag \& Drop
4.) Select channel 2 (filtered actual speed) via "Drag and drop" from the status tree
5.) Set trigger to channel 1 and DG.

Input of the mask in HEX
Triggering a rising edge to input 11 .
BIT 0 (value 1) = IO
BIT 1 (value 2) $=11$
BIT 2 (value 4) $=12$ etc.

Trigger to input	10	$I 1$	$I 2$	13	14	15	16	17
Trigger mask in hex	1	2	4	8	10	20	40	80

The masks can also be combined so that the trigger is only active, if several inputs are active. Example: Triggering to I 2 and I 5 and $\mathrm{I} 6->4 \mathrm{~h}+20 \mathrm{~h}+40 \mathrm{~h}=64 \mathrm{~h}$ The mask for input I1 is in this case 2.
Select rising edge.
NOTE: If the trigger mask DG (digital) is selected for a channel, the display mode of the trigger channel is automatically set to DIG display.

6.) Start measurement

7.) Set pretrigger in the OSCI window

Note: There is no level for the DIG trigger. The the event limit determines the mask If a trigger event occurs, the measurement values are captured until the measurement is completed.
Afterwards, the measurement values are read from the Compax3 and displayed.
The display mask of trigger channel 1 was not yet limited, therefore it shows all 16 bit tracks (b0...b15). In order to limit it to 8 bit tracks, you must call up the menu for channel 1 via [CH1] and select "change logic of display mask [H].
Limit the display mask to 8 bit tracks with Mask FFh.
In the display the bit tracks b0 to b7 are now shown:
Example: Only b0 and b1 are to be displayed: Set display mask to 03

4.4.3. Controller optimization

Automatic controller design... 186

4.4.3.1 Introduction

In this chapter you can read about:
Basic structure of the control with Compax3 ... 168
Proceeding during configuration, setup and optimization .. 168
Software for supporting the configuration, setup and optimization.................................... 169

Basic structure of the control with Compax3

Compax3 is an intelligent servo drive for different applications and dynamic motion sequences.

Basic structure of a control with the Compax3e servo drive

SG: Command value generator
BEFORE: Feed Forward
As shown in the above figure, the programmed motion sequences are generated by the internal Compax3 setpoint generator. The setpoint position as well as the other status values of the feedforward control are made available to the position controller in order to keep the following error as small as possible.
For the control, Compax3 requires on the one hand the actual position and on the other hand the commutation position, which represents the reference between the mechanic feedback position and the motor magnet.

Proceeding during configuration, setup and optimization

Overview of the processes during configuration and setup of the Compax3 drive system

The controller presettings are calculated from the configured motor and application parameters with the aid of the automatic controller design which runs in the background.
These controller presettings provide normally for a stable and robust control. Due to continually rising application requirements, this presetting is often not sufficient, so that further optimization of the control behavior is necessary.
This manual describes the setup and optimization procedure for Compax3. In order to better understand the correlations and interactions, we will describe in the first step the individual correlations and physical values, that are required for the configuration and the prespecification of the control loops. In the following, the manual will then describe the function blocks for the optimization implemented in the servo drive as well as the setup tool.

Software for supporting the configuration, setup and optimization

The entry of the motor and application parameters is made with the C3
ServoManager2 (C3Mgr2.exe):
The configuration requires:

Application parameters

The wizard guided entry of the application parameters takes place directly in the ServoManager.

Carefully verify the entries and default values in order to detect entry errors in the run-up.

After the configuration download, the drive can be set up and be optimized if needs be. For this, please open the optimization window of the ServoManager:

4.4.3.2 Configuration

In this chapter you can read about:
Control path... 170
Motor parameters relevant for the control ... 171
Mass inertia .. 171
Nominal point data... 171
Saturation values.. 173
Quality of different feedback systems ... 173
Typical problems of a non optimized control .. 174
Feedback error compensation .. 175
Commutation settings ... 176
$I^{2} t$ - monitoring of the motor... 176
Relevant application parameters.. 179
Asynchronous Motors... 182

Control path

For the motors, the knowledge of the mathematical model is a prerequisite.
Mathematically idealized model of the control path:

$\mathrm{U}:$	Control voltage
$\mathrm{U}_{\text {EMK: }}:$	electromagnetically generated voltage in the motor
$\mathrm{T}:$	electric time constant of the motor winding
$\mathrm{L}:$	Winding Inductance
$\mathrm{R}:$	Winding Resistance
$\mathrm{M}_{\mathrm{A}}:$	Drive torque of the motor
$\mathrm{M}_{\mathrm{L}}:$	Load torque
$\mathrm{M}_{\mathrm{B}}:$	Acceleration torque
$\mathrm{I}:$	Actual current r.m.s. (torque-producing)
$\mathrm{K}_{\mathrm{T}}:$	Torque constant
$\mathrm{J}_{\text {mot }}:$	Motor mass moment of inertia
$\mathrm{J}_{\text {ext }}:$	external mass moment of inertia
$\mathrm{J}_{\text {total }}:$	Total mass moment of inertia
$\mathrm{a}:$	Acceleration
$\mathrm{n}:$	Velocity

Explanation:

The motor is controlled by the servo drive with control voltage U. During motion of the motor, an internal back e.m.f. $U_{\text {емс }}$ is induced. This antagonizes the control voltage and is therefore deduced in the motor model. The difference is available for the acceleration of the motor.
The first order delay component represents the delaying property of the motor winding with the time constant $T=L / R$. According to Ohm's Law, a current $I=U / R$ results.
The drive torque of the motor is calculated by multiplying the current with the motor torque constant K_{T}. This is antagonized by the load torque of the machine.
The remaining acceleration torque accelerates the motor.
The resulting acceleration depends on the total mass moment of inertia (= motor + load moment of inertia).
The integration of the acceleration (sum of the acceleration over time) results in the velocity of the motor, which influences the amplitude of the induced EMC voltage.

Motor parameters relevant for the control

All motor parameters relevant for the control quality will be explained below. Wizard guided entry of the motor parameters in the MotorManager.

Electromotoric countercheck EMC

A non-energized synchronous motor induces an induction voltage, the so-called EMC voltage during an armature movement.
The EMC constant (motor EMC) states the value of the induced voltage subject to velocity.
The EMC constant corresponds to the motor torque constant K_{T}, which represents the correlation between the torque-producing current and the drive torque, however in a different unit.
The EMC voltage antagonizes the control voltage of the servo drive.
As the control voltage of the drive is not unlimited, it must be taken into consideration that the drive may approach the voltage limit at high velocities and therefore high EMC voltages.
The EMC constant is important with respect to the velocity control design.
The motor EMC is entered in the "motor characteristics" wizard window of the MotorManager. You may choose between different units. Please note the information on the motor type specification plate.

Mass inertia

The mass moment of inertia (moment of inertia) is also an important motor parameter for the design of the velocity control loop. For the velocity control design, this parameter is effective in correlation with the external mass moment of inertia of the load. The external load is entered in the C3 ServoManager. With the "load identification" function of the C3 ServoManager, the mass inertia can be determined, if it is not yet known.

Nominal point data

In this chapter you can read about:

Motor characteristic line of a synchronous servo motor (torque via velocity) 172
Calculation of the reference current from the characteristic line. 172
The nominal point data can be found in the velocity characteristic line of the motor. The prespecified nominal point can be changed in the 2nd wizard page of the C3 ServoManager configuration with the aid of "activate change of reference point" via the reference velocity and the reference current.

Motor characteristic line of a synchronous servo motor (torque via velocity) SMH 60301.4 ...2ID...4: 3000rpm at 400VAC

1: Nominal point
2: Forbidden range
Calculation of the reference current from the characteristic line.

$$
I=\frac{M[N m]}{E M K} \bullet 85,5=\frac{M[N m]}{K_{T}}
$$

or for linear motors

$$
I=\frac{M[N m]}{E M K v} \bullet \frac{\sqrt{2}}{\sqrt{3}}=\frac{M[N m]}{K f}
$$

In the MotorManager, a motor can be defined for different operating modes (230V, 400 V and 480 V) without having to create several entities.
Additional parameters of a motor are:

- Standstill current [mA $\mathrm{mss}^{\text {] }}$]
- Pulse current [in \% of the nominal current]

The pulse current can be provided by the Compax3 for the duration of the pulse current time (as far as the device current permits). The thermal pulse load of the motor rises due to the pulse current. This pulse load is monitored by the $i^{2} t$ monitoring in the Compax3.

Saturation values

A motor may show a saturation behavior at higher currents due to iron saturation. This results in the reduction of the winding inductance at higher currents. As the inductance value of the winding enters directly into the P term of the current controller, the saturation at higher currents will result in too fast current control. This behavior can be counter steered with saturation values (entered in the "motor characteristics" wizard window of the MotorManager).
Consideration of the saturation values with the aid of a linear characteristic line

For the determination of the saturation values please see chapter $\mathbf{0}$ (see on page 227, see on page 228).

Quality of different feedback systems

In this chapter you can read about:

Noise... 174
The controller quality depends to a great extent on the signal quality of the position feedback and its signal acquisition. It is therefore important to select a suitable measurement system for the individual application.
In the rotary range, a resolver is mostly used for reasons of economics. The single pole resolver provides one sine/cosine period per revolution. In very demanding applications, the performance of the resolver is often not satisfactory, so that a SinCos feedback with a higher resolution must be used. The typical resolution of a SinCos feedback is 1024 periods/revolution.
Other position feedbacks which are often used in the linear range, differ with respect to the reading principle. High-quality optical position measuring systems offer the highest resolution and accuracy.

Interface

An additional distinctive feature is the electric interface between servo drive and feedback. Analog sine/cosine signals or digital encoder signals (RS422 standard) are used to transmit the incremental position information. Due to the high interpolation rate (approx. 14 bits) of the Compax3 servo controller, an analog sine/cosine signal is in most cases preferable to digital encoder signals.

Resolution

The less precise the resolution, the higher the quantization noise on the velocity signal.

Noise

The feedbacks have different levels of analog noise, which have a negative effect on the control. The noise can be dampened with the aid of filters in the actual value acquisition, however at the cost of the controller bandwidth.
For comparison, the noise of the actual velocity value at standstill of two different feedbacks is displayed.

Resolver: 1 period/revolution

SinCos: 1024periods/revolution

Typical problems of a non optimized control

In this chapter you can read about:

$$
\begin{aligned}
& \text { Too high overshoot on velocity .. } 174 \\
& \text { Increased following error. } \\
& \text { Instable behavior } \\
& \text { Upon first setup of a control, the controller is normally not able to meet all } \\
& \text { application requirements at once. Typical problems may be: }
\end{aligned}
$$

Too high overshoot on velocity

1) Actual velocity
2) Setpoint velocity

Increased following error

Increased following error when approaching the target position or the reduction of the following error takes too long

1) Following error
2) Setpoint velocity
3) Actual velocity

Instable behavior

1) Setpoint velocity
2) Actual velocity
3) Following error

Feedback error compensation

Feedbacks with sine/cosine tracks may have different errors. The feedback error compensation supported by Compax3 eliminates offset and gain errors on both tracks online.

The feedback error compensation is activated in the MotorManager:
"Feedback system" wizard under "feedback error compensation".
Without compensation

top: Actual current value bottom: Actual speed value

Scale:
Current $=50 \mathrm{~mA} /$ Div Speed $=0.2 \mathrm{~mm} / \mathrm{s} /$ Div Time $=3.8 \mathrm{~ms} /$ Div

Type of motor: Parker LMDT 1200-1 ironless linear motor Linear encoder: Renishaw RGH 24B with $20 \mu \mathrm{~m}$ resolution Servo drive: Compax3

In order to accept the changes in the MotorManager in the project, the individual configuration pages must be clicked through. In order to make the changes made in the MotorManager effective in the device, the configuration download in the C3Manager must be executed.
In the event of formal errors, the feedback error compensation may however be disadvantageous; therefore it is switched off as a default.

Commutation settings

Another prerequisite for a good control quality is the correct motor commutation of the motor. This comprises several settings.
-The commutation angle describes the relation of the feedback position with respect to the motor pole pair position.
-Commutation direction reversal describes the correlation between the position of the feedback and the commutation position.
-Feedback direction reversal describes the direction correlation between the defined positive direction of the drive and the feedback position.

- If the commutation direction does not match the defined direction of rotation, this will result in a subsequent error with the error message "following error" or "motor stalled".
- A faulty commutation angle value results in increased current and following error. Therefore the voltage limit is reached faster. If the value of the commutation error exceeds 90°, the motor will spin due to the positive feedback effect.
These 3 settings can be automatically acquired with the MotorManager.
With the aid of the automatic commutation acquisition, the commutation settings can be determined and plausibility checks can be made. You will be guided through the individual wizard pages and the MotorManager will issue a prompt to define the positive direction of the drive. The wizard pages supporting the user depend on the feedback system as well as on the motor type (linear or rotary).

This function is activated in the MotorManager:
"Feedback system" wizard under "automatic commutation settings".
Note The motor should be operated without load (=> no load torque e.g. weight force of a z-axis).
Additional setting of the commutation for incremental feedback:
This function is activated in the MotorManager:
"Feedback system" wizard under "feedback resolution".
In the event of an incremental feedback (Sine/cosine or RS424 encoder) the commutation must be defined in addition, in order to find the position reference to the winding.

- Automatic commutation with movement
- Commutation with digital hall sensors

1^{2} t - monitoring of the motor

In this chapter you can read about:

Motor continuous usage:

This kind of monitoring watches over the continually deliverable torque (continuous current). This continuous current depends on the velocity and is acquired online from the linearization of the motor characteristic line.

Linearized motor characteristic lien for different operating points

Nominal point

I_{0} : Standstill current
1: Nominal point
I_{N} : \quad Nominal current (defined in the MotorManager)
n_{N} : Nominal Speed
2: Forbidden range
For monitoring the continuous utilization, the linearized characteristic line between I_{0} und I_{N} / n_{N} is used as a threshold.

Reference point 1: higher velocity at reduced torque

I_{0} : Standstill current
rp1: Reference point 1 (defined in the C3 ServoManager)
l_{1} : Reference current to reference point 1
n_{1} : Reference velocity to reference point 1
2: Forbidden range
For monitoring the continuous usage, the linearized characteristic line between I_{0} and l_{1} / n_{1} is used as a threshold.

Motor pulse usage

This monitoring watches over the duration of the defined pulse current. The permitted duration for the pulse current is defined by the pulse current time constant.
If the acceleration current exceeds the nominal current for a defined time $t 1$, a sufficient break time t 2 is required. If the current remains in average above the nominal current, the "monitoring motor pulse usage" [0x7180] error is triggered. Upon a high pulse usage, the error will occur almost without delay.

Current cycle:

Reference point 2: Increased torque thanks to additional cooling

Io: Standstill current
1: Nominal point
rp2: Reference point 2 (defined in the C3 ServoManager)
I_{2} : Reference current to reference point 2
n_{2} : Reference velocity to reference point 2
2: Forbidden range
In order to monitor the continuous usage, the velocity-idenpendent current limit I_{2} is used.

If a r.m.s. current over the valid straight flows continually in the motor, the $I^{2} t$ monitoring will issue the "effective motor current monitoring" error message [0×5 F48]. The period of time until the error occurs depends on the thermal time constant of the motor defined in the motor parameters. The electronic temperature monitoring simulates approximately the temperature behavior of the motor. By defining a reference point different from the motor nominal data, the $I^{2 t}$ monitoring of the motor can be adapted to changed thermal ambient conditions (e.g. air stream caused by a ventilator fan).

Relevant application parameters

In this chapter you can read about:

Limit and monitoring settings 182
Application parameters relevant for the control (C3 ServoManager) Compax3 is configured with the aid of the C3 ServoManager. Here you can make application dependant settings. Among these are also parameters, that are relevant for the control. They will be explained below.

Switching frequency of the motor current / motor reference point

In this chapter you can read about:

Following Error (Position Error)... 179
Reduction of the current ripple...
Motor parameters .180
Changing the switching frequency and the reference point...
The higher the switching frequency, the better the quality of the current control. The higher switching frequency reduces the dead time of the current control path as well as the current control noise. Furthermore, thermal losses caused by current ripple are reduced at higher switching frequencies.

Following Error (Position Error)

Too high following error (position error) during a movement

1) Setpoint Position
2) Position deviation = following error
3) Effective position

Reduction of the current ripple

Reduction of the current ripple of the phase current due to the higher switching frequency

1: Current ripple
2: Phase current
3: PWM control
Hint Please note that a high switching frequency means also high switching losses in the power output stage of the controller. For this reason, you must consider derated data of the servo controller for the drive design with higher switching frequencies.

Motor parameters

In this chapter you can read about:

Parker Motor

If a Parker motor is used for the application, the parameters are already contained in the installed software. You can just select one of the available motors from the first configuration page.

Other motor

When using a motor from a different manufacturer, you will have to enter the relevant data. This process is supported by the MotorManager software tool, which can be called up from the ServoManager:

After double clicking on "new", the individual motor parameters are queried by the MotorManager.

Be careful to respect the units of the individual parameters when making your entries!

Furthermore you can use the MotorManager to edit motors already available. In addition, the import and export of motor data entities in XML format is supported.

Motor types supported

Compax3 supports the following motor types:

- Permanently excited synchronous rotary motors
- Permanently excited synchronous linear motors
- Asynchronous rotary motors

In general, rotary and linear motors do have the same signal flow chart. The difference consists solely in the basic physical values, which refer to circular movement resp. the linear motion laws of physics. For this, the following analogies can be established:

Rotary drive [unit]			Linear drive [unit]
Travel x	$[\mathrm{rev}]$	Path x	$[\mathrm{m}]$
Mass moment of inertia J	$\left[\mathrm{kgm}^{2}\right]$	Mass m	$[\mathrm{kg}]$
Velocity n Angular velocity ω	$[\mathrm{rps}]$ $[1 / \mathrm{s}]$	Velocity v	$[\mathrm{m} / \mathrm{s}]$
Torque constant Kt	$[\mathrm{Nm} /$ Arms $]$	Force constant KF	$[\mathrm{N} /$ Arms $]$
Torque M	$[\mathrm{Nm}]$	Force F	$[\mathrm{N}]$

For reasons of clarity, we will in the following refer to the rotary motor, which will represent both drive types.

An asynchronous motor is set up in the same way as a synchronous motor. The only differences are varying motor parameters.

Changing the switching frequency and the reference point
The switching frequency and the reference point are activated in the ServoManager: "Motor reference point" wizard

A reference point differing from the nominal data may also be entered on the wizard page displayed above.
Please activate "activate changing the reference point", then you may enter the new reference velocity as well as the new reference current.

Motor reference point

A reference point differing from the nominal data may also be entered on the wizard page displayed above.
Please activate "activate changing the reference point", then you may enter the new reference velocity as well as the new reference current.

External Moment of Inertia

The external mass moment of inertia is set against the moment of inertia of the rotor to form the total moment of inertia. The total moment of inertia is used for the controller design.
If you do not know or have only a vague knowledge of the external mass moment of inertia, the mass inertia can be determined via the load identification.

Configuration of an unknown external mass inertia:

The load identification is activated in the ServoManager:
Wizard "External moment of inertia" "unknown: Using default values".
The correct values can be determined later via the load identification!

Limit and monitoring settings

On the "limit and monitoring settings" wizard page, you can set among others the current and velocity limits in \% of the nominal values. The nominal values are motor parameters resulting from the motor library or from shifting the reference point on the "motor reference point" wizard page.

Limit and Monitoring Settings wizard page:

1: Current (Torque) Limit
2: Velocity limit

Asynchronous Motors

In this chapter you can read about:
Type specification plate data 182
Replacement switching diagram - data for a phase 182
Slip Frequency 183
Saturation behavior 183
Cut-off frequency for the field weakening range 184
Rotor time constant 184
Determination of the commutation settings 184
Asynchronous motors: Extension of the controller structure. 185

Type specification plate data

On the 2nd. wizard page of the Compax3 MotorManager, the type specification plate data must be entered.

Replacement switching diagram - data for a phase

This data can be obtained from the manufacturer or be determined by measurement.

U1:	Nominal phase voltage
$\mathrm{R} 1:$	Stator leg resistance
$\mathrm{X} 1 \sigma=2 \pi \mathrm{fL} 1 \sigma:$	Leak reactance (for $\mathrm{f}=50 \mathrm{~Hz}$ mains frequency)
$\mathrm{L} 1 \sigma:$	Stator leakage inductance
$\mathrm{X}_{\mathrm{h}}=2 \pi \mathrm{fL} \mathrm{L}:$	Main reactance (for $\mathrm{f}=50 \mathrm{~Hz}$ mains frequency)
$\mathrm{LH}:$	Main field inductance
$\mathrm{X} 2 \sigma^{\prime}=2 \pi \mathrm{fL} 2 \sigma:$	Referenced leak reactance (for $\mathrm{f}=50 \mathrm{~Hz}$ mains frequency)
$\mathrm{L} 2 \sigma:$	Rotor leak inductance
$\mathrm{R}_{\mathrm{z}}:$	Referenced carriage resistance
$\mathrm{I}_{\mathrm{mR}}:$	Magnetizing current

Slip Frequency

The slip frequency is stated in [Hz electrical] or in [\%o] and can be determined as follows
$\mathrm{f} 2[\mathrm{mHz}$ (electrical) $]=\left(\mathrm{fs} * 60-\mathrm{Nnominal}^{*} \mathrm{P} / 2\right) / \mathrm{N}$

$$
\begin{aligned}
& f_{2}[m H z(e l .)]=\frac{f_{S} \cdot 60-N_{\text {Nenn }} \cdot \frac{P}{2}}{f_{S} \cdot 60} \cdot f_{S} \cdot 1000=\left(f_{S}-N_{\text {Nenn }} \cdot \frac{P}{120}\right) \cdot 1000 \\
& f_{2}[\operatorname{Pr} \text { omille }]=\frac{f_{S} \cdot 60-N_{\text {Nenn }} \cdot \frac{P}{2}}{f_{S} \cdot 60} \cdot 1000
\end{aligned}
$$

$$
\frac{f_{s} \cdot 60 \cdot 2}{N_{\text {Nenn }}}
$$

Whereas $P=$ value before the point of the term è
f_{s} : \quad Synchronous nominal frequency (dimensioning base)
$\mathrm{N}_{\text {Nom: }}$: \quad Nominal speed in rpm
f_{2} : \quad Slip frequency in mHz (electrical)

Saturation behavior

The saturation of the main field inductance can be considered with the help of the following characteristic.
Activate the "consider saturation values" checkbox.

1) Nominal point in the basic speed range

Lhmax: max. main field inductance
Sbeg: Beginning of Saturation
Send: End of Saturation

Cut-off frequency for the field weakening range

The statement of the cut-off speed defines the beginning of the field weakening operation. From the cut-off speed on, the magnetization current and thus the force constant of the motor are reduced inversely proportional to the speed; the motor is operated in the field weakening range. In the field weakening range, the shaft power produced remains constant.

1: Basic speed range
2: Field weakening range

Rotor time constant

If the value of the rotor time constant is not known, it can be approximated automatically.

Determination of the commutation settings

On the last wizard page of the Compax3 MotorManager, the commutation settings (feedback direction reversal and commutation direction reversal) can be determined automatically.

Asynchronous motors: Extension of the controller structure

Structure of the magnetization current controller and determination of the slip frequency:

4.4.3.3 Automatic controller design

In this chapter you can read about:
Dynamics of a control ... 186
Cascade control.. 192
Rigidity ... 193

Controller coefficients ... 196

Dynamics of a control

In this chapter you can read about:

Structure of a control ... 186
Oscillating plant ... 186
Stability, attenuation .. 186
Velocity, bandwidth... 187
Setpoint and disturbance behavior of a control loop... 190
Response ... 192
Limitation behavior .. 192
A change in the input value of a dynamic transmission element causes a change of its output value. The change of the output value is however not immediately effective, but takes a certain time, the transient response. The course of the transient response is characteristic for certain kinds of transmission behavior. For this reason, a complete description of the transmission properties of a control comprises the stationary behavior (all setpoint, actual and disturbance values in settled state), as well as the dynamic behavior.

Structure of a control

The basic task of a control is the generation and maintaining of a desired state or sequence in spite of interfering disturbances. It is essential that the effects of the disturbances are balanced with the correct force and at the correct time. In the above figure, the setpoint value W represents the desired state and the disturbance value Z represents the interfering disturbance. The actual value X represents the generated and maintained state.

Oscillating plant

Oscillating control paths are control paths that respond with attenuated or unattenuated oscillation to an abrupt change in the setpoint value. Part of this class are for instance:

- Linear actuators with toothed belts, as a toothed belt represents an elasticity.
- A mechanic shaft with an external mass moment of inertia, as the shaft represents an elasticity due to its torsional properties.
In general this kind of elasticity is due to a high ratio between $\mathrm{J}_{\text {Load }} / \mathrm{J}_{\text {Motor }}$, as the shaft is normally not designed for this high external load and which may lead to a considerable distortion.

Stability, attenuation

In this chapter you can read about:

[^4]
Stability problem in the high-frequency range:

The "control structure" figure shows that the reverse effect in the control loop (negative feedback) is a prerequisite for the functioning of a control system. Due to the delay in signal transmission, the effect of the negative feedback is diminished or even compensated. The reason is that the corrective measures of the controller are also delayed in the event of delayed signal transmission. This results in a typical oscillating course of the control variable. In the worst case, the deviation of the control variable and the effect of the corrective measures get in phase, if the delays reach a defined value. The negative feedback passes into positive feedback. If the product of the gain factors of all control loop components is higher than 1 , the oscillation amplitude will continually rise.
In this case the control loop is unstable. In the total gain of 1 the oscillation keeps its amplitude and the control loop is within the limits of stability. The transient response can be characterized by the attenuation and the transient time (velocity).

Step response of a stable controller and of a controller approaching the stability limit

Rugged
Well attenuated

Rugged
Poorly attenuated

Stability limit not attenuated

W: Setpoint value
x : Actual value

Stability problem in the low-frequency range:

In this case the controller was set for a very inert control path, while the actual control path is much more dynamic. The controller reacts to a disturbance variable with a much too strong corrective measure so that the disturbance variable is overcompensated and even an increasing oscillation may be the result. In this case the mechanic system of the control path may be destroyed.

Velocity jerk response (low-frequency stability limit)

1: Setpoint speed value
2: Actual speed value

Velocity, bandwidth

In this chapter you can read about:
P-TE - Symbol ... 188
Step response of a delay component .188
Approximation of a well-attenuated control loop...
Frequency response of the P-TE component (value and phase). 189
A well attenuated control loop can, under certain conditions, be approximated in order to simplify the controller design with a first order delay component (P-TE component) with the replacement time constant TE and the total gain Kp. A P-TE component represents a first order delay component and is a simple dynamic basic component.

P-TE - Symbol

Step response of a delay component
Step response of a first order delay component with $\mathrm{Kp}=1$ and $\mathrm{TE}=2.0$ s

T: Tangent
S: Input jerk
P-TE: Output value of the P-TE component
TE: Time constant of the P-TE component
The definition of the delay time constant is displayed in the above figure. The time of intersection of the tangent and the jerk function itself is by definition the delay time constant (called filter time constant for filters) of a P-TE component. At this point in time the value of the step response is approx. 63% of the final value. In practice the step response corresponds, for instance, to the voltage charge curve of a capacitor.

Approximation of a well-attenuated control loop

The approximation of a well-attenuated control loop is based on the sameness of the control surface of the ideal first order delay component (P-T1 component) and the approximated system (P-TE component).
The control surface is a measure for the velocity of a system and is defined in the following figure. If the surface of the approximated system corresponds to the surface of the ideal system, the approximated system can be described, up to a certain frequency, with the transmission function of the $\mathrm{P}-\mathrm{T} 1$ component.

Determination of the control surface from the transmission behavior of a P-TE component.

The velocity of a dynamic system can also be described in the frequency range. In the frequency range, the system behavior is analyzed to sinusoidal inputs signals of different frequencies (frequency response).
Input and output signals of a dynamic transmission component at a defined frequency $f=f 1$

The bode diagram represents the behavior of a dynamic system (in our case of the P-TE component) against the input signal frequency with respect to amplitude and phase.

Frequency response of the P-TE component (value and phase)

Cut-off frequency

$$
f_{0}=\frac{1}{2 \pi \cdot T_{E}}=0,0795 \mathrm{~Hz}
$$

is the frequency where the input signal is attenuated by $3 \mathrm{~dB}(-3 \mathrm{~dB}$ attenuation).
The phase shift between the output and the input is -45° at this frequency.
Precisely this cut-off frequency is called the bandwidth of a control loop.

Setpoint and disturbance behavior of a control loop

In this chapter you can read about:

Demand behavior.
Disturbance behavior.. 190
Test functions
Characteristics of a control loop setpoint response .191
The setpoint behavior is the behavior of the control loop for the setpoint variable W. We assume that the disturbance variable $\mathrm{Z}=0$.

The disturbance behavior describes the behavior of the control loop for disturbance variable Z. In this case, we assume, in analogy to the setpoint behavior, that the setpoint variable $\mathrm{W}=0$.

Demand behavior

Disturbance behavior

W: Setpoint value
X : Actual value
Z: Disturbance variable
In order to examine the disturbance and setpoint behavior, the Compax3 setup software offers 4 jerk functions.

Test functions

Test functions for the analysis of disturbance and setpoint behavior of the control loops

1: 4 jerk functions
The properties of the setpoint behavior of the velocity controller can be acquired from the velocity jerk response.

Characteristics of a control loop setpoint response

$\mathrm{T}_{\mathrm{sr}}:$	Response time. (Time elapsing until the control variable reaches one of the $+-5 \%$ tolerance limits for the first time)
$\mathrm{T}_{\mathrm{s}}:$	Settling time. (Time elapsing until the control variable ultimately enters the $+-5 \%$ range)
$\mathrm{V}_{\mathrm{m}}:$	maximum overshoot width
1	Tolerance range $+-5 \%$
2	Setpoint value

Response

The response of the controller is the behavior of the actual value with respect to the calculated profile of the setpoint generator. The kinematic status variables, speed, acceleration and jerk are fed into the cascade as feedforward signals. The feedforward signals work with calculated factors and contribute to an improved contour constancy due to the minimization of the following error.

Compax3 servo controller structure

Limitation behavior

Each control variable is limited by the control (actuating) element. If the control variable demanded by the controller is within the linear range (without limitation), the control loop shows the behavior defined by the design. If the controller demands however a higher control variable than permitted by the limitation, the control variable is limited and the controller slows down.

Hint You should therefore make sure that the control variable (output) of the controller does not remain within the limitation or only for a very short time.

Cascade control

In this chapter you can read about:
Structure of a cascade control .. 192
Cascade structure of Compax3... 193
In drive technology, a cascading structure with several controllers (normally 3) is often used. This improves the control behavior. For this, additional sensors must be fixed within the control path. You will get the structure of a cascade control.

Structure of a cascade control

W1 Setpoint value (setpoint) for the superposed controller 2
W2 Setpoint value (setpoint) for the subordinate controller 1
X2: \quad Actual variable (actual value) for controller 2
X1:
The cascade control offers the following advantages:

- Disturbances occurring within the control path, can be compensated in the subordinate control loop. Therefore they must not pass through the entire control path and are thus compensated earlier.
- The delay times within the path can be reduced for the superposed controller.
- The limitation of the intermediate variables can be made by the control variable limitation of the superposed controller rather easily.
- The effects of the non-linearity for the superposed controllers can be reduced by the subordinate control loops.
In the Compax3 servo drive, a triple cascade control is implemented with the following controllers - position controller, velocity controller and current controller.

Cascade structure of Compax3

Rigidity

In this chapter you can read about:

Static stiffness ... 193
Dynamic stiffness
Correlation between the terms introduced
The stiffness of a drive represents an important characteristic. The faster the disturbance variable can be compensated in the velocity control path and the smaller the oscillation caused, the higher the stiffness of the drive. With regard to stiffness, we distinguish static and dynamic stiffness.

Static stiffness

The static stiffness of a direct drive is comparable with the spring rate D of a mechanical spring, and indicates the excursion of the spring in the event of a constant interference force. It is the ratio between the constant force FDmax of the motor and a position difference. Due to the I term in the velocity controller, the static stiffness is therefore infinitely high in theory, as the I term is integrated until the control difference vanishes. In a digital control the static stiffness is above all limited by the finite resolution of the position signal (the error must be at least one quantization step, so that it can be detected by the reading system) and by numerical resolution. Additional effects are for instance mechanical stiffness of the mechanic components in the control path (e.g. load connection, guiding system) as well as measurement errors of the measurement system.

Dynamic stiffness

In this chapter you can read about:

Traditional generation of a disturbance torque/force jerk.. 194
Electronic simulation of a disturbance torque jerk with the disturbance current jerk........ 194
Disturbance jerk response .. 194
The dynamic stiffness is described by the ratio between the change in load torque or in load force and the resulting position deviation (following error):

The higher this ratio (=dynamic stiffness), the higher the necessary change is load torque in order to generate a defined following error.
The dynamic stiffness can be acquired from the disturbance jerk response.

Traditional generation of a disturbance torque/force jerk

In settled state of the control, the motor force FM corresponds exactly to the load force $\mathrm{FG}=\mathrm{m} \times \mathrm{g}$.
If the cord is cut through, the load force is eliminated abruptly and the controller must first of all settle to the new situation.

In order to simulate this load jerk electronically, a disturbance current jerk is fed to the Compax3 as a variable proportional to the disturbance torque at the velocity controller output.

Electronic simulation of a disturbance torque jerk with the disturbance current jerk

Feeding in of a disturbance current jerk, which corresponds to a disturbance torque jerk. The maximum amplitude an the settling time of the following error decline with rising dynamic stiffness. The settling behavior of the following error is furthermore a measure for the attenuation and the bandwidth of the control.

Disturbance jerk response

1: Compensation torque of the controller
2: Simulated disturbance torque
3: Actual speed
4: Following error
5: Settling Time

Correlation between the terms introduced

The introduced terms:

- Stability
- Damping
- Velocity
- Bandwidth
- Setpoint and disturbance behavior
- Control variable limitation
- Replacement time constant
- Rigidity
are related as follows:
- A well-attenuated control features a stable control behavior.
- The velocity of a control loop is a measure for the reaction rate of the controller to the disturbance variable (disturbance behavior) as well as to the setpoint variable (setpoint behavior).
- The faster the control, the higher its bandwidth.
- The term replacement time constant is an approximation and is only valid in a defined scope1. In this scope, the control is always stable and well-attenuated.
- If the controller does not work in the linear range, but the control variable of the controller is within the limitation, the control slows down and the control difference rises.
-The stiffness represents the bandwidth of the velocity control. The higher the stiffness value of the velocity control, the higher the bandwidth of the velocity controller and the stiffer the drive.

Automated controller design

In this chapter you can read about:

Step response of the velocity loop depending on the optimization parameter "attenuation" and "stiffness".
The controller design takes place after the configuration immediately before the configuration download into the device. The controller coefficients are preassigned according to the design method of cross-ratios so that a stable control is achieved. The automatic, robust controller design calculates the P and I terms of the individual controllers (current, velocity, position) on the basis of the configured motor and application parameters.

Please observe: Faulty motor and application parameters may lead under certain circumstances to instable controllers.
The controller parameters are not directly available for the optimization. Instead, they can be changed with the aid of the following optimization parameters:

Optimization of the current controller \quad Current loop bandwidth in \%
dynamics:
Optimization of the velocity loop dynamics:

- "Attenuation of current loop" in \%
-"Stiffness" in \%
- "Attenuation" in \%
-Velocity loop - "D" term in \% The bandwidth parameter states the actually effective $\%$ of the calculated default velocity. The default bandwidth of the current controller is fixed to approx. $\mathrm{fGR}=531 \mathrm{~Hz}$. In reverse this signifies that each motor delivers the same step response. The prerequisite is, of course, that you keep out of the control signal limitation (voltage limitation). The attenuation characterizes the controller's tendency to oscillate with respect to an excitation signal (see below). The stiffness (of the velocity loop, corresponds to the bandwidth of the current loop) describes the velocity of the velocity loop (see below).

Step response of the velocity loop depending on the optimization parameter "attenuation" and "stiffness"
Attenuation = 100\%
Stiffness = 100\%

1: Setpoint value

2: Actual value (stiffness $=200 \%$)
3: Actual value (stiffness = 100\%)
4: Actual value (stiffness $=50 \%$)
5: Actual value (attenuation $=500 \%$)
6: Actual value (attenuation $=100 \%$)
7: Actual value (attenuation $=50 \%$)
The D-term parameter (of the velocity loop) activates existing control oscillations of drives with elastic coupling (e.g. toothed belt drives). The D-term is not automatically designed and must therefore be set manually.
The position controller is automatically adapted depending on the stiffness of the velocity loop.

Controller coefficients

In this chapter you can read about:

D-term of the KD velocity controller ... 197
P-term KV position loop ..
Dependence of the controller coefficients from the optimization objects The controller coefficients are influenced by the optimization objects such as
"stiffness" and/or "attenuation". The dependency is displayed below.
I-term KI in the velocity loop
$K_{I}=\frac{S t[\%]}{100 \cdot T_{E G D}}$
$\Rightarrow K_{I} \sim S t$
$\begin{array}{ll}T_{E G D} & \text { The replacement time constant of the closed velocity loop. } \\ \text { St } & \text { Rigidity }\end{array}$

Velocity Loop P Term
$K_{P V}=\frac{S t[\%]}{100 \cdot T_{E G D}} \cdot \frac{\operatorname{Tm}[\%]}{100} \cdot T_{N} \cdot \frac{100}{E M K[\%]} \cdot \frac{30+0,14 \cdot D p[\%]}{20}$
$\Rightarrow K_{P V} \sim S t \wedge K_{P V} \sim T m / E M K \wedge K_{P V}=f_{L I N}(D p)$
$\mathrm{T}_{\text {EGD }}$: \quad The replacement time constant of the closed velocity loop.
T_{N} : \quad The mechanical integration time constant of the motor.
$\mathrm{f}_{\mathrm{LI}}()$: Linear function (straight) between attenuation and KPV
Tm Moment of Inertia
St Rigidity
Dp Damping

D-term of the KD velocity controller

$K_{D}=\frac{\text { Dterm[\%] }}{100} \cdot K_{D_{-} 100 \%}$
$\Rightarrow K_{D} \sim$ Dterm

KD_100\% The defined 100% coefficient
Dterm D term

P-term KV position loop

$K_{V}=\frac{S t[\%]}{100 \cdot T_{E G D}} \cdot \frac{20}{30+0,14 \cdot D p[\%]} \cdot T_{X}$
$\Rightarrow K_{V} \sim S t[\%] \wedge K_{V}=f_{\text {LIN }}(1 / D p[\%])$
$\mathrm{T}_{\mathrm{EGD}}$: The replacement time constant of the closed velocity loop.
T_{x} : The position integration time constant of the motor.
St Rigidity
Dp Damping
fiIN (): Linear function (straight) between 1/attenuation and KV

4.4.3.4 Setup and optimization of the control

For the setup and optimization of the control loops, the optimization window is available.
The Compax3 control functionality is divided into 2 sections, standard and advanced; the advanced functionality does however incorporate the entire standard functionality. The switching can be made in the optimization window.

Switching between standard and advanced

Note: The listed objects are not up to date!
In this chapter you can read about:
Standard 198
Advanced 204
Commissioning window 219
Proceeding during controller optimization 221
Standard
In this chapter you can read about:
Standard cascade structure 199
Standard optimization parameters 200
Control signal limitations 200
Feedforward channels 202
Control signal filter / filter of actual acceleration value. 204

Standard cascade structure

Description of the objects
The framed objects are coupling objects for Compax3-Compax3 coupling via HEDA.
Please note that the corresponding controller components must be deactivated for the coupling:
When coupling the velocity (O2219.14): O100.1 or O100.2=1063 (see object description)
When coupling via current (O2220.2): O100.1 or O100.2=1031 (see object description)
O100.1 is only copied into O100.2 upon activation of the controller, the controller can be influenced in active state with the aid of O100.2.

Changing objects O100.1 and O100.2 may cause the control to be deactivated! Protect dangerous areas!

External command value

During external setpoint specification, please respect the structure images for electronic cams or gearboxes for signal filtering with external setpoint specification (see on page 227)!
Complementary structure for load control (see on page 158).
Compax3 controller structures (see on page 199, see on page 204, see on page 206).

Symbol	Description
K_{p}	Proportional term signal is multiplied with K_{p}
	First order delay component (P-T1 term)
	Integration block (l-block)
	Pl-block
	Limitation block (signal limitation)
	Notch filter (band elimination filter)
\bigcirc	Addition block
blue description	Optimization objects (simple pointer line)
red description	Status objects (pointer line with vertical stroke)

Standard optimization parameters

Optimization object	Dverview optimization objects	
	Value	Unit
Reference reaction (Feed-Forward)		
Velocity feed-forward [2010.1]	100	$\%$
Acceleration feed-forward [2010.2]	100	$\%$
Current feed-forward [2010.4]	100	$\%$
Jerk feed-forward [2010.5]	100	$\%$
Setpoint-1Disturbance reaction (Dynamics)		$\%$
Stiffness [2100.2]	100	$\%$
Damping [2100.3]	100	$\%$
Velocity loop - "D" term [2100.7]	0	$\%$
Analog Input		$\%$
Gain 0 [170.2]	1	$\%$
Offset 0 [170.4]	0	$\%$

The above figure shows the parameters for the standard group. With the aid of these parameters, you can optimize the standard cascade structure.

Control signal limitations

In this chapter you can read about:

The cascade structure shows that a limitation block is available in the control signal sector of each controller. The limitations of the position and velocity loops are calculated from the set limitations in the configuration and the motor parameters of the selected motor.

Limitation of the setpoint velocity

Limitation of the setpoint velocity in the control signal sector of the position loop: This limitation value is calculated from the maximum mechanical velocity of the motor and the set value in the configuration in \% of the nominal velocity. The smaller of the two values is used for the limitation.

Example

MotorManager

maximum mechanical velocity of the motor:	$\mathrm{n}_{\max }=3100 \mathrm{rpm}$
Rated speed of the motor:	$\mathrm{n}_{\mathrm{N}}=2500 \mathrm{rpm}$

C3 ServoManager

Max. Operating velocity:	$n_{\text {bmax }}=200 \%$ of n_{N} $=>5000 \mathrm{rpm}$

Velocity limitation value $=$ $M I N\left(n_{\text {max }}, n_{\text {bmax }}{ }^{*} n_{N} / 100\right)=$	3100 rpm

Limitation of the setpoint current

Limitation of the setpoint current in the control signal sector of the velocity loop: This limitation value is calculated from the device peak current, the pulse current of the motor and the set value in the configuration in \% of the nominal current. The smaller of the three values is used for the current limitation.

Example

Device

C3 S063 V2 F10 T30 M00 device peak current: $\quad \mathrm{I}_{\text {Gmax }}=12.6 \mathrm{~A}_{\text {ms }}$

MotorManager

Rated current of the motor:	$I_{N}=5.5 \mathrm{Arms}$
Peak Current:	$\mathrm{I}_{\mathrm{Imp}}=300 \% \mathrm{I}_{\mathrm{N}}$
	$=>16.5 \mathrm{~A}_{\mathrm{rms}}$

C3 ServoManager

Current (Torque) Limit:	$\mathrm{I}_{\max }=200 \%$ of I_{N}
	=> 11A ${ }_{\text {ms }}$
Current limitation value $=$ $\operatorname{MIN}\left(I_{\text {Gmax }}, I_{\text {imp }}{ }^{*} I_{N} / 100, \operatorname{Ibmax}{ }^{*} I_{N} / 100\right)=$	$11 A_{\text {rms }}$

Limitation of the control voltage

Limitation of the control voltage in the control signal sector of the current loop: This limitation is fixed and cannot be influenced by the user. The limitation value depends on the DC voltage of the device.

Please note! In the event of highly dynamic motion cycles it is necessary to make sure not to enter the control signal limitation (or, if so only for a very short time) as the drive is then not in the position to follow the set dynamics due to the slow drive physics and the limited control signal range.

Feedforward channels

In this chapter you can read about:
Influence of the feedforward measures ... 202
Motion cycle without feedforward control
Motion cycle with feedforward measures .203
The feedforward channels are used for the specific influence of the guiding behavior of a control. The calculated and evaluated status variables are coupled into the corresponding places within the controller cascade. In practice, the feedforward control offers the following advantages:

- Minimal following error
- Improves the transient response
- Gives greater dynamic range with lower maximum current

The Compax3 servo drive disposes of four feedforward measures (see in the standard cascade structure):

- Velocity Feed Forward
- Acceleration feed-forward
- Current feed-forward
- Jerk feed-forward

The above order represents at the same time the effectiveness of the individual feedforward measures. The influence of the jerk feedforward may be, depending on the profile and the motor, negligibly small.

Please note! But the principle of feedforward control fails in limiting the motor current or the motor speed during the acceleration phase!

Influence of the feedforward measures

Following error minimization by feedforward control / course of the setpoint generator signals

xws: Position setpoint value of the setpoint generator
nws: Velocity setpoint - setpoint generator
aws: Acceleration setpoint value setpoint generator
rws: Jerk setpoint value setpoint generator

Motion cycle without feedforward control

Motion cycle with feedforward measures

Velocity feedforward

Velocity and acceleration feedforward

Velocity, acceleration and current feedforward

Velocity, acceleration, current and jerk feedforward

Control signal filter / filter of actual acceleration value

The filters in the Compax3 firmware are implemented as P-T1 filters (first order deceleration component see chapter 0 (see on page 227, see on page 228).) The two "control signal filter (velocity loop)" (Object 2100.20) and "acceleration value filter" (Object 2100.21) are set in $\mu \mathrm{s}$. The value range for these filters is $63 \ldots$ $8300000 \mu \mathrm{~s}$. Depending on the replacement time constant of the closed velocity loop, we can make recommendations for the setting.

Setting recommendation for "control signal filter (velocity loop)":
O2100.20 \leq O2210.17[$\mu \mathrm{s}] / 5 \quad$ for $\mathrm{O} 2210.17 \geq 10000 \mu \mathrm{~s}$
$\mathrm{O} 2100.20 \leq \mathrm{O} 2210.17[\mu \mathrm{~s}] / 3-1333 \mu \mathrm{~s} \quad$ for $4000 \mu \mathrm{~s} \leq \mathrm{O} 2210.17<10000 \mu \mathrm{~s}$
$\mathrm{O} 2210.20=0 \quad$ for $\mathrm{O} 2210.17<4000 \mu \mathrm{~s}$
O2210.17: Object replacement time constant of the velocity loop in $\mu \mathrm{s}$.
O2100.20: Object control signal filter (velocity loop) in $\mu \mathrm{s}$.
Please note! It cannot be excluded that the filter may have a destabilizing effect even though set according to the above recommendation. In this case the filter time constant must be reduced.

Advanced

In this chapter you can read about:
Extended cascade (structure variant 1)... 204
Extended cascade structure (structure variant 2 with disturbance variable observer)..... 206
Optimization parameter Advanced... 207
EMC feedforward.. 208
Motor parameters .. 208
Filter "External Command Interface" ... 208
Voltage decoupling ... 208
Load control.. 208
Luenberg observer ... 208
Commutation settings of the automatic commutation .. 211
Notch filter ... 215

Control measures for drives involving friction... 218

Extended cascade (structure variant 1)

Description of the objects
The framed objects are coupling objects for Compax3-Compax3 coupling via HEDA.
Please note that the corresponding controller components must be deactivated for the coupling:
When coupling the velocity (O2219.14): O100.1 or O100.2=1063 (see object description)
When coupling via current (O2220.2): O100.1 or O100.2=1031 (see object description)
O100.1 is only copied into O100.2 upon activation of the controller, the controller can be influenced in active state with the aid of O100.2.

Changing objects O100.1 and O100.2 may cause the control to be deactivated! Protect dangerous areas!

External command value

During external setpoint specification, please respect the structure images for electronic cams or gearboxes for signal filtering with external setpoint specification (see on page 227)!
Complementary structure for load control (see on page 158).
Compax3 controller structures (see on page 199, see on page 204, see on page 206).

Symbol	Description
K_{p}	Proportional term signal is multiplied with K_{p}
	First order delay component (P-T1 term)
	Integration block (l-block)
	PI-block
大寺	Limitation block (signal limitation)
	Notch filter (band elimination filter)
\bigcirc	Addition block
blue description	Optimization objects (simple pointer line)
red description	Status objects (pointer line with vertical stroke)

Description of the objects
The framed objects are coupling objects for Compax3 - Compax3 coupling via HEDA.
Please note that the corresponding controller components must be deactivated for the coupling:
When coupling the velocity (O2219.14): O100.1 or O100.2=1063 (see object description)
When coupling via current (O2220.2): O100.1 or O100.2=1031 (see object description)
O100.1 is only copied into O100.2 upon activation of the controller, the controller can be influenced in active state with the aid of O100.2.

Changing objects O100.1 and O100.2 may cause the control to be deactivated! Protect dangerous areas!

External command value

During external setpoint specification, please respect the structure images for electronic cams or gearboxes for signal filtering with external setpoint specification (see on page 227)!
Complementary structure for load control (see on page 158).
Compax3 controller structures (see on page 199, see on page 204, see on page 206).

Symbol	Description
K_{p}	Proportional term signal is multiplied with K_{p}
	First order delay component (P-T1 term)
	Integration block (l-block)
	PI-block
\triangle	Limitation block (signal limitation)
	Notch filter (band elimination filter)
\bigcirc	Addition block
blue description	Optimization objects (simple pointer line)
red description	Status objects (pointer line with vertical stroke)

Optimization parameter Advanced

Overview optimization objects		
Optimization object	Value	Unit
Reference reaction (Feed-Forward)		
Velocity feed-forward [2010.1]	100	\%
Acceleration feed-forward [2010.2]	100	\%
Current feed-forward [2010.4]	100	\%
Jerk feed-forward [2010.5]	100	\%
Setpoint-/Disturbance reaction (Dynamics)		
Stiffness [2100.2]	100	\%
Damping [2100.3]	100	\%
Moment of Inertia [2100.4]	100	\%
Velocity loop - "D" term [2100.7]	0	\%
Filter - Actual velocity [2100.5]	100	\%
Fitter 2 - actuating signal (velocity controller) [2100.10]	0	us
Filter - Actual acceleration [2100.6]	0	\%
Fitter 2 - Actual acceleration [2100.11]	0	Us
Current loop - Bandwidth [2100.8]	50	\%
Current loop - Damping [2100.9]	100	\%
Observer		
Time Constant [2120.1]	0	us
Fitter - Observed disturbance [2120.5]	1000	us
Enable Disturbance Compensation [2120.7]	0	
Position Control		
Position Loop - KV factor [2200.3]	100	\%
Fitter external input setpoints		
Filter - Ext. velocity feed-forward [2011.1]	500	\%
Fitter - Ext. accel. feed-forward [2011.2]	500	\%
Fitter - Ext. jerk feed-forward [2011.3]	500	\%
Filter external signal source		
Filter - Ext. velocity feed-forward [2011.1]	500	\%
Fitter - Ext. accel. feed-forward [2011.2]	500	\%
Trackingfilter HEDA [2109.1]	0	500us
Filter setpoints		
Trackingfilter [2110.1]	1	500us
Fitter velocity [2110.3]	0	\%
Fitter acceleration [2110.4]	0	\%
Analog Input		
Gain 0 [170.2]	1	
Offset 0 [170.4]	0	
Gain 1 [171.2]	1	
Offset 1 [171.4]	0	

Current controller

The current controller works with a P component in the feedback; this results in very low overshoot.
With the aid of object 2220.27 (Bit $0=" 1 "$), it is possible to switch to P component in the forward path.

EMC feedforward

The EMC feedforward compensates the electromagnetically generated back e.m.f. of the motor $U_{\text {емс. }}$. This signal is proportional to velocity and is deduced from the setpoint velocity of the setpoint generator.

Motor parameters

Furthermore you can re-optimize the motor parameters inductance, resistance and EMC ($\mathrm{or} \mathrm{Kt)} \mathrm{in} \mathrm{the} \mathrm{advanced} \mathrm{mode}$. smallest and the highest inductance value of the winding, measured during one motor revolution.

Filter "External Command Interface"

Signal filtering with external command value (see on page 227, see on page 228)

Voltage decoupling

In the current control path there is a velocity and current proportional voltage disturbance variable, which must be compensated by the current loop. Due to limited controller dynamics, this disturbance variable can not always be entirely compensated by the current loop. The influence of this disturbance variable may however be minimized by activating the voltage decoupling.

Load control

If a second position feedback is available for the acquisition of the load position, the load control can be activated.

For more detailed information on the load control see device help for T30/T40 devices in the setup chapter Compax3
load control.

Luenberg observer

In this chapter you can read about:

```
Introduction observer.
208
```

Signal flow chart Luenberg observer... 209

Introduction observer

A high signal quality of the actual signal value is of high significance in the control of the motor velocity n or the motor speed v. By means of oversampling and transmitter error compensation, a high-quality position signal can be produced for speed determination. As a rule the motor speed is determined by numeric differentiation of the motor position. In this case the quantization noise QvD of the digital speed signal depends on the quantisation $Q x$ of the position signal and the sampling time TAR of the digital control loop:
Quantization speed signal QvD

$$
Q_{v D}=\frac{Q_{x}}{T_{A R}}
$$

The quantisation of the speed signal is inversely proportional to the sampling time TAR. Hence the demands for the lowest possible sampling time and the minimum quantization noise oppose each other in the determination of speed by numeric differentiation. The noise superimposed by the digital speed signal may be reduced by the low-pass filter, however this is always at the cost of the stability margin of the digital control loop. An alternative method is to determine the speed by integration of the acceleration. The dependence of the quantisation noise QvD of the digital speed signal on the quantisation $Q x$ of the position signal and the sampling time TAR of the digital control loop is shown by the following correlation. Quantization speed signal Qvl
$Q_{v I}=Q_{a} \cdot T_{A R}$
The observer technology offers the advantage that the velocity can be calculated with the aid of integration. The idea of the observer principle is to connect a mathematical model of the control path parallel to the section observed and with the same transfer behavior. In this case, the controller also has the intermediate variables (state variables) of the control path available. However in the presence of model deviations (in structure or parameters), different signal values occur between the model and the control path. For this reason, the technique cannot be employed in this way in practice. However, the model contains the measurable output signal of the control section as a redundant quantity. By comparing the two variables, a tracking control can be used to adapt the model state variables to the state variables of the control path. As the model deviations have become minor in this case due to the simple mechanical drive train, the observer now has an efficient aid available to increase the signal quality. Increase in signal quality in the observer means that the noise components decrease, and the dynamics improve as the observed speed is feedforward-controlled undelayed by the current and is not just calculated delayed from the position signal using simple differentiation.

Signal flow chart Luenberg observer

Beobachter / observer

$\mathrm{I}(\mathrm{t}):$	Torque-forming motor current
$\mathrm{Kt}:$	Torque constant
$\mathrm{ML}(\mathrm{t}):$	External disturbance torque
$\mathrm{Jtotal}:$	Total mass moment of inertia (motor + load)
$\mathrm{a}(\mathrm{t}):$	Acceleration
$\mathrm{n}(\mathrm{t}):$	Velocity
x(t):	Position
Index b:	Observed signal quantities
$\mathrm{h0} . . \mathrm{h} 2:$	Controller coefficients of the tracking controller

The figure shows that an additional I element is connected for interference compensation to correct external disturbance forces in the observer. Therefore the speed and the acceleration observed are statically precise. The same applies to the output of the integrator in the tracking controller which is a statically precise determination of an external interference torque ML. For this reason, the I component is not required in the speed controller for some applications, and the entire control can be set up as a state cascade control. This increases the bandwidth of the speed and position controlled member by factor 2 . For this reason this increases the interference stiffness of the drive and the following error behavior improve.

Note The use of the speed monitor with interference compensation (=> no l-term in the speed control) needs an active position control. Without this superimposed control the axis drifts, even with a speed setpoint value of 0 !

Here the quantization of the speed signal is proportional to the sampling time TAR, hence there is no longer any conflict between the requirements for minimum sampling time and minimum quantization noise. For the integral velocity acquisition, the motor current variable, which is proportional to the acceleration, can be used. This approach is particularly advantageous in direct drive engineering; due to the absence of a mechanical drive train, there is a very good match between the mathematical model of the observer and the real physical control section in the fundamental frequency range of the control. This applies in particular to direct drive systems with fixed moving masses, as otherwise the mismatch between model and the physical drive system has a destabilizing influence on the transfer behavior of the speed control. A remedy is to increase the observer dynamics, however this increases the noise of the observed signals. Therefore in the case of variable moving masses a compromise has to be found between the dynamics of the observer and the maximum stiffness of the drive.

Commutation settings of the automatic commutation

In this chapter you can read about:

Display of the commutation error in incremental feedback systems 211
Prerequisites for the automatic commutation .. 212
Course of the automatic commutation function ... 212
Other .. 215
Permanently excited synchronous motors can only be operated with an absolute feedback system (at least for electric motor rotation). The reason is the necessary commutation information (position assignment of the magnet field generated by the motor to the motor magnets). Without the commutation information, there is inevitably the possibility of a positive feedback between position and velocity loop ("running away" of the motor) or of bad motor efficiency (reduced force constant). Digital hall sensors are the most common aid to prevent this. Due to the mechanical design it is however impossible or very hard to integrate these sensors in some motors. The Compax3 automatic commutation function (in the F12 direct drive device) described below allows however to use incremental feedback systems without hall sensors.
The functionality implemented in the servo drive establishes the necessary reference between motor stator field and permanent magnetic field without additional aids.
The incremental feedback devices are, in contrast to absolute feedback devices, able to acquire relative distances. It is true that any position can be approached from a starting point, there would be however no consistency between these position values and a fixed virtual absolute system. Other than with an absolute feedback, the correlation between rotor and stator is lost if the position acquisition is switched off ("the position acquisition zero is lost"). When switching on, the actual position is randomly taken as zero. A commutation angle error can therefore absolutely not be excluded. Even a system adjusted before, would show an angular error, for example after a current failure. Therefore the angular error occurring randomly upon each new switching on must always be compensated in an incremental system.

Display of the commutation error in incremental feedback systems
$\Delta \varepsilon=0$ (adjusted) $\quad \Delta \varepsilon \neq 0$ (not adjusted)

Rotor was turned in switched-off state.
blue: ideal position
red: unfavorable position
PM: magnetic flux of the permanent magnets
i_{s} : Current pointer
$\Delta \varepsilon \quad$ Commutation error
I': ideal position
i_{q} : Quadrature current (torque forming)
The automatic commutation function (AK) in Compax3 uses the position dependent sinusoidal torque course of permanently excited AC synchronous motors. If the motor windings are energized with DC voltage for instance, the motor develops a sinusoidal torque depending on the rotor position, which can be used for example by evaluating the resulting movement in order to determine the correct motor commutation.
The automatic commutation with movement in the Compax3 has the following properties:

- The motor movement occurring during the commutation is, with correctly parameterized function, very small. It is typically in the range smaller than 10° electrical revolution ($=10^{\circ} /$ motor poles physically or $10^{\circ} / 360^{\circ *}$ motor pitch for a linear motor).
- The precision of the acquired commutation angle depends on the external conditions, however lies normally in the range better than 5° electrical revolution.
- The time until the termination of the commutation acquisition is typically below 10s.

Prerequisites for the automatic commutation

- A movement of the motor must be permitted. The movement actually occurring depends greatly on the motor (friction conditions) itself, as well as on the load moved (inertia).
- Applications requiring a motor brake, i.e. applications where active load torques are applied at the motor (e.g. vertical actuator, slope) are not permitted.
- Due to the function principle, high static friction or load torques will deteriorate the result of automatic commutation.
- When performing automatic commutation, a motion of at least $\pm 180^{\circ}$ must be electrically possible (no mechanic limitation)! The implemented automatic commutation function with motion cannot be used for applications with limit or reversal switches.
- With the exception of missing commutation information, the controller/motor combination is configured and ready for operation (parameters correctly assigned for the drive/linear motor). Feedback direction and effective direction of the field of rotation must be identical (automatic commutation performed in the MotorManager).

Course of the automatic commutation function

If "automatic commutation with movement" is selected as source of commutation, the automatic commutation sequence runs once if the power stage is enabled. If the power stage is enabled or disabled afterwards, the automatic commutation will be left out. If an error occurs during the execution, the automatic commutation is aborted. A new "attempt to enable" the power stage will trigger a new automatic commutation.

Function principle of the automatic commutation with movement

The implemented method with movement is based on the sinusoidal dependence of the provided motor currents and the resulting movement on the effective commutation error. The acceleration performed by the motor (-> movement) in the event of constantly maintained current is a measure for the actual change in the commutation angle in the way that it disappears upon a change of exactly 0° and is, for other angles, the acceleration and its direction in dependence of the sign and value of the angular error $\left(-180^{\circ} . . \quad 180^{\circ}\right)$.

Acceleration torque depending on the commutation error.

$\Delta \varepsilon:$	Commutation error
$\mathrm{M} / \mathrm{M} \mu \alpha \xi$	normalized acceleration torque

Searching for the torque maxima (phase 1)

If the sum of the actual and the estimated error angle is $\pm 90^{\circ}$ electrically, the motor torque is maximal for the provided current. If you gradually increase the provided motor current, the motor will, from a defined value on, surpass its friction torque and exceed a motion threshold defined by O2190.3:

Illustration of the first phase

1):	Motion threshold O2190.3
2):	Waiting for standstill
O2190.2:	Starting current

Latching of the motor (phase 2)

Here, the drive is brought to the position with the provided motor torque $=0$, where the angular error is either $+-180^{\circ}$ or 0°.

Current rise in the second phase.

O2190.1
1)

Rising time of latching current
Maximum current from controller or motor
Monitoring on 5° electrical movement
Monitoring on 60° electrical movement

Motion reduction:

It is possible, to considerably reduce the motor movement occurring during the fine angle search with the aid of the "motion reduction" parameter (O2190.4). Please respect also that the acquired commutation result may be slightly worse than without this measure.

Hint As a current well above the nominal motor current is provided here, there may be saturation effects on iron core motors, which might lead to an instable current loop (-> highly frequent "creaking noises" during the automatic commutation). This can be avoided by activating the saturation characteristic line in the motor data.

Test for positive feedback (phase 3)

Here it is verified, if the motor performs a motion in the expected positive direction in the event of positive current in the torque maximum. The same motion threshold (defined via O2190.3) as in phase 1 is valid. The test is repeated several times.

A current course in ramp form is specified (target: minimum motion). The break between the tests varies with he current rise time O2191.1.

Illustration of the third phase

Other

- During the sequence (time according to parameterization>>1s) the automatic commutation is externally visualized by a LED blinking code (green permanent and red blinking).
- Device errors will lead to an abort of the automatic commutation.
- During automatic commutation, no motion commands are accepted.
- The controller cascade entirely deactivated during automatic commutation, with the exception of the current loop.
- In multi-axis applications, the axes to be automatically commutated must be awaited (output of the MC_Power block must deliver "True")!
- The automatic commutation is only started if the drive is at standstill.
- After the occurring and acknowledgement of a feedback error or a configuration change of the feedback system, the automatic commutation must be performed again, as it might be that the position entrainment in the servo controller is interrupted (commutation information is lost).

Notch filter

In this chapter you can read about:
Effect of the notch filter... 215
Wrongly set notch filter ... 215
Frequency response of the notch filter. ... 216
Parameterization by 3 objects. .216
Notch filters are small-band band elimination filters which slope in a wedge form towards the center frequency. The attenuation of this center frequency is extremely high in most cases. With the aid of the notch filters it is possible to purposefully eliminate the effects of mechanical resonance frequencies. With this, the mechanical resonance point is not activated itself, but the excitation of this point of resonance is avoided by the control.

Effect of the notch filter

As can be seen in the figure, the notch filter is only useful in cases where the set frequency of the notch filter is exactly the same as the disturbing frequency. The notch filter as well as the resonance point are very narrowband. If the resonance point does only minimally change (e.g. by changing the masses involved), it is not sufficiently activated by the notch filter.

Wrongly set notch filter

In the Compax3, two notch filters which are independent of each other are implemented.

Frequency response of the notch filter.

Center frequency $=500 \mathrm{~Hz}$
Bandwidth $=50 \mathrm{~Hz}$
Depth $=0.99(-40 \mathrm{~dB})$

Parameterization by 3 objects.

In this chapter you can read about:

This defines the frequency at which the notch filter attenuation is highest. In practice it shows that notch filters can only sensibly be used if the distance between the controller bandwidth (velocity loop) and the center frequency is long enough (at least factor 5). This permits to deduce the following recommendation:
O2150. $x \geq \frac{5000000}{2 \pi \cdot O 2210.17[\mu s]}$
$x=1$ or $x=4$
Obj2210.17: Replacement time constant of the velocity loop in $\mu \mathrm{s}$
Note: If this distance is too small, the stability of the control can be very negatively influenced!
This defines the width of the notch filter.
The value refers to the entire frequency band, where the attenuation of the filter is higher than (-)3dB.
In practice it shows that even if there is enough distance towards the control, it can be negatively influenced by too high bandwidths (higher than $1 / 4$ of the center frequency).
O2150. $x \leq \frac{02150.1 / 4}{4}$
$x=2$ or $x=5$
With this the size of the attenuation of the filter must be at the position of the center frequency. One stands here for complete attenuation ($-\infty \mathrm{dB}$) and zero for no attenuation.
O2150. $x=1-10^{-\left(\frac{D[d B]}{20}\right)}$
$x=3$ or $x=6$
D [dB]: The desired attenuation at the center frequency in $d B$

Saturation behavior

In this chapter you can read about:
Current jerk response ... 217
Current jerk response with the activated saturation characteristic line...
Saturation can be stated with the aid of current jerk responses at different current height.

Current jerk response

Current jerk response of a motor to 2 different currents (1Arms / 2Arms)

1) Actual current

2) Setpoint current

In the above figure we can see from the settling response that the drive shows a distinctive tendency to oscillate at doubled current. The saturation characteristic line, which is used to linearly reduce the P-term of the current loop depending on the current, helps against such a saturation behavior.
If you respect the saturation for the above example with the aid of the saturation characteristic line, the tendency to oscillate of the current loop can again be activated.

Current jerk response with the activated saturation characteristic line

The parameterization of the characteristic line is made in the MotorManager.
Note: \quad In order to accept the changes in the MotorManager in the project, the entire configuration must be confirmed.

- In order to make the changes from the MotorManager effective in the device, the configuration download must be executed.

Control measures for drives involving friction

In this chapter you can read about:

Frictio				

Some drives, which involve much friction due to their guiding system, may show permanent oscillation at standstill. The transition between static friction (standstill) and kinetic friction (very low speed) is very steep. The controller can not longer follow the friction characteristic line at this position. The I-term integrates until the control variable pulls free the drive and the drive moves too far. This procedure is repeated in the opposite direction and a control oscillation occurs (so-called limit cycle). In order to eliminate this control oscillation, the following control functions were implemented:

- Deadband following error (Obj. 2200.20)
- Filter following error (Obj. 2200.24)
-Friction compensation (Obj. 2200.21)

Deadband following error

Deadband/filter following error in the position loop

The deadband does no longer supply a velocity setpoint value (zero) for the subordinate velocity loop at small following error. The integrator of the velocity loop stops integrating and the system comes to a standstill.
In order to prevent that the velocity loop is excited by the noise on the following error, the following error should be filtered before the deadband, which will lead, however, to delays in the position loop. The deadband to be set depends on the friction behavior (amplitude of the limit cycle) and on the noise on the following error (the noise must remain within the deadband).

Friction compensation

The activation of the friction compensation (end of the velocity loop)

Commissioning window

In this chapter you can read about:
Load identification..
Setpoint generation .. 219
With the aid of the setup window, the drive can be set up in a simple way.

Load identification

If you do not know the mass moment of inertia, it can be determined. For this, you click on the corresponding button (see setup window no. 13). After the following parameter entry, the identification can be started via the same button.

- For more detailed information on the load identification, see the device help, chapter "load identification".
- This measurement requires the correct EMC or torque constant value Kt.

Setpoint generation

In this chapter you can read about:

External setpoint generation ..
The setpoints for the control loops are provided in two different ways - internally or externally. The setpoint generation depends on the technology option of the device.

Internal setpoint generation

The internal setpoint generation can be used for the technology options >T10. In this case, the internal setpoint generator generates the entire motion profile with position, velocity, acceleration and jerk.

Motion profile at jerk-controlled setpoint generation

$x_{w} \quad$ Position
$n_{w} \quad$ Velocity
$\mathrm{a}_{\mathrm{w}} \quad$ Acceleration
$j_{w} \quad$ Jerk
The drive cannot move randomly through hard profiles, as certain physical limits exist for the acceleration ability due to the motor physics and the limitation of the control variable. You must therefore make sure that the set movement corresponds to the real physics of the motor and of the servo drive.
As a support you can take the following physical correlation.
The calculation of the physically possible acceleration
rotary drives

$$
a\left[r p s^{2}\right]=\frac{M_{A}[N m]-M_{L}[N m]}{2 \pi \cdot J_{g e s}\left[\mathrm{kgm}^{2}\right]}
$$

M_{A} : Drive torque of the motor
M_{L} : Load torque of the motor
$J_{\text {total }}$: entire mass moment of inertia a: possible acceleration

Linear drives

$$
a\left[m / s^{2}\right]=\frac{F_{A}[N]-F_{L}[N]}{m_{g e s}[k g]}
$$

F_{A} : Drive force of a linear motorF_{L} : Load force of a linear motor$\mathrm{m}_{\text {total }}$: Total mass of a linear motor

The generation of the setpoint profile is jerk-controlled and jerk-limited by the specification of the jerk.
In practice, jerk-limited setpoint generation is important if the items to be moved must be handled gently. In addition, the service life of the mechanical guiding system will be extended. A separate setting of jerk and slope of the deceleration phase also permits overshoot-free positioning in the target position. For this reason, it is common practice to use higher values for acceleration and jerk in the acceleration phase than in the deceleration phase. In consequence a higher cycle rate can be achieved.
An additional important reason for the jerk limitation is the excitation of higher frequencies due to the too high jerk in the power density spectrum of the velocity function.

$$
\text { Jerk }=1000^{\circ} / \mathrm{s}^{3}
$$

Jerk $=1000000 \% \mathrm{~s}^{3}$
Time function:

Time function and power density spectrum of Compax3 setpoint generator with different jerk settings

Power density over the frequency
The profile can be simply calculated and displayed for control purposes.

External setpoint generation

During external setpoint generation, the necessary feedforward signals are calculated from the external setpoint with the aid of numerical differentiation and final filtering.

Hint For more detailed information on the external setpoint generation see device help for T11/T30/T40 devices in the "setup" chapter Compax3lloptimizationllcontroller dynamics \backslash signal filtering at external setpoint specification"

Test Move

In order to evaluate the behavior of the drive, test movements can be defined. For this you jump into the parameter entry either with the aid of the "enter setup/test movement parameters" or by selecting the parameter tab. Via the "setup settings" menu you access the settings for the desired test movement.
The desired motion profile can be set via the parameters in the following window.

Proceeding during controller optimization

In this chapter you can read about:

Main flow chart of the controller optimization .. 222
Controller optimization disturbance and setpoint behavior (standard) 223
Controller optimization disturbance and setpoint behavior (advanced)............................ 225
If the control behavior is not sufficient for the present application, an optimization is required. We recommend the following approach:

Overview on the approach to setup + optimization

- At first, the disturbance and setpoint behavior of the velocity loop at standstill and at different displacement velocities is optimized (stiffness, attenuation, filter).
- After that, the necessary motion profiles are set via the setup tool and the desired guiding behavior in the entire velocity range is set via the feedforward control (motion profiles, feedforward).

Controller optimization disturbance and setpoint behavior (standard)

In this chapter you can read about:
Controller optimization standard .. 224
Controller optimization of toothed belt drive

Controller optimization standard

Controller optimization of toothed belt drive

Controller optimization disturbance and setpoint behavior (advanced)

In this chapter you can read about:

Controller optimization Advanced 225
Flow chart controller optimization of a direct drive. 226
Controller optimization guiding transmission behavior 227

Controller optimization Advanced

 (Obj. 2100.3) and increase "stiffness" (Obj. 2100.2) until the optimum is reached.
3.) In the event of optimization to speed constancy, increase "attenuation" (Obj. 2100.3) and reduce "stiffness" as far as necessary (Obj. 2100.2) until the optimum is reached.
4.) Disturbance (Obj. 2120.7) in connection with the "filter of observed disturbance" (Obj. 2120.5)
may cause further improvements.

2.) In systems with high friction, reduce "attenuation"

Stabilize controller with the aid of:

- Decrease stiffness (Obj. 2100.2)
- or/also reduce observer time constant (Obj. 2120.1)
- or/also reduce control signal filter (Obj. 2120.1)
- or/also modify attenuation (Obj. 2100.3)
- Vary filter of observed disturbance (Obj. 2120.5) or switch off disburbance (reduce stiffness before!)

Flow chart controller optimization of a direct drive

Controller optimization guiding transmission behavior

4.4.4. Signal filtering with external command value

The command signal read in from an external source (via HEDA or physical input) can be optimized via different filters.
For this the following filter structure is available:

4.4.4.1 Signal filtering for external setpoint specification and electronic gearbox

Does not apply for Compax3I11T11!

"virtual Master" and Busmaster only with T30 \& T40.

* Speed v and acceleration a are only present in the event of linear interpolation (method of interpolation: O3925.1-0x60C0) if they are provided by an external source.
In quadratic or cubic interpolation, v and a are emulated.
B : Structure image of the signal processing,
D/E: Structure of Gearing
Control structure (see on page 199, see on page 204, see on page 206)
Symbols

Tracking filter

The displayed filter influences all outputs of the tracking filter. Number: Object number of the filter characteristic

Differentiator

Output signal = d(input signal)/dt
The output signal is the derivation (gradient) of the input signal
Filter
Number: Object number of the filter characteristic

Interpolation

Linear Interpolation.
Values in the 500μ s grid are converted into the more exact time grid of $125 \mu \mathrm{~s}$.

Note:

- A jerk setpoint generator is not required for external setpoint specification.
- The description of the objects can be found in the object list.

4.4.5. Input simulation

Function: The input simulation is used for the performance of tests without the complete input/output hardware being necessary.
The digital inputs (standard and inputs of M10/M12 option) as well as the analog inputs are supported.
The following operating modes are available for digital inputs:

- The physical inputs are deactivated, the digital inputs are only influenced via the input simulation.
-The digital inputs and the physical inputs are logically or-linked. This necessitates very careful action, as the required function is, above all with low-active signals, no longer available.
The pre-setting of an analog input value is always made in addition to the physical analog input.

The function of the inputs depends on the Compax3 device type; please refer to the respective online help or the manual.

The input simulation is only possible if the connection with Compax 3 is active and if the commissioning mode is deactivated!

In this chapter you can read about:
Calling up the input simulation.
Operating Principle .229

4.4.5.1 Calling up the input simulation

Open the optimization window (double click in the C3 ServoManager tree entry: Optimization).
Activate the Tab "Setup" in the right lower window.
Clicking on the following button will open a menu; please select the input simulation.

4.4.5.2 Operating Principle

Window Compax3 InputSimulator:

1. Row:Standard Inputs E7 ... E0 $=$ " 0 " button not pressed; $=$ " 1 " switch pressed
2. Row: Optional digital inputs (M10 / M12)

Green field: port 4 is defined as input
Red field: port 4 is defined as output
the least significant input is always on the right side
3. Row: If the button "deactivating physical inputs" is pressed, all physical, digital inputs are deactivated; only the input simulation is active.
If both sources (physical and simulated inputs) are active, they are or-linked!

Caution!

Please consider the effects of the or-linking; above all on low-active functions.
4. Row:Simulation of the analog inputs 0 and 1 in steps of 100 mV .

The set value is added to the value on the physical input.

After the input simulation has been called up, all simulated inputs are on " 0 ".
When the input simulation is left, the physical inputs become valid.

4.4.6. Setup mode

The setup mode is used for moving an axis independent of the system control The following functions are possible:

- Homing run
- Manual+ / Manual-
- Activation / deactivation of the motor holding brake.
- Acknowledging errors
- Defining and activating a test movement
- Activating the digital outputs.
- Automatic determination of the load characteristic value (see on page 232)
- Setup of the load control (see on page 156)

Activating the commissioning mode

By activating the setup mode, das Steuerungsprogramm (IEC-Programm) is deactivated; the system function of the device is no longer available.
Access via an interface (RS232/RS485, Profibus, CANopen,...) and via digital inputs is deactivated. (if necessary, acyclic communication ways are nevertheless possible (e.g. Profibus PKW channel)

Caution!

The safety functions are not always guaranteed during the setup mode! This will for instance lead to the fact that the axis may trundle to a stop if the Emergency stop button is pressed (interruption of the 24 V on C3S X 4.3), which requires special caution with z axes!
\bullet In the Commissioning window (left at the bottom) the commissioning mode is activated.

- Then parameterize the desired test movement in the Parameter window.

You can accept changed configuration settings into the current project.

- Now energize drive in the commissioning window and start the test movement.

Caution! Safeguard the travel range before energizing!

Deactivating the commissioning mode

If the setup mode is left, the drive is deactivated and the das
Steuerungsprogramm (IEC-Programm) is re-activated.

Note: \quad The parameters of the commissioning window are saved with the project and are loaded into Compax3 if the commissioning mode is activated (see explanation below).

4.4.6.1 Motion objects in Compax3

The motion objects in Compax3 describe the active motion set.
The motion objects can be influenced via different interfaces.
The following table describes the correlations:

4.4.7. Load identification

Automatic determination of the load characteristic value:

- of the mass moment of inertia with rotary systems
- of the mass with linear systems.

In this chapter you can read about:
Principle .. 232
Boundary conditions ... 232
Process of the automatic determination of the load characteristic value (load identification)233
Tips ... 234

4.4.7.1 Principle

The load characteristic value is automatically determined.
For this it is necessary to excite the system additionally with a signal (excitation signal = noise).
The excitation signal is fed into the control loop. The control loop dampens the excitation signal. Therefore, the superimposed control loop is set so slowly by reducing the stiffness, that the measurement is not influenced.
A superimposed test movement is additionally possible. This helps to eliminate possible mechanical effects such as rubbing caused by friction.

4.4.7.2 Boundary conditions

If the control is instable before the beginning of the measurement, please reduce the stiffness (in the optimization window at the left bottom)
The following factors can disturb a measurement:

- Systems with high friction (e.g. linear actuators with sliding guide)

Here, the systems where the static friction is considerably higher than the kinetic friction (slip-stick effect) are especially problematic.

- Systems with significant slack points (play)
- Systems with "too light" or susceptible to oscillation bearing of the total drive (rack).
Formation of rack resonances. (e.g. with gantries,...)
- Non constant disturbance forces which influence the speed development. (e.g. extremely strong slot moments)
The effects of the factors one to three on the measurement can be reduced by using a test movement.

Caveat emptor (exclusion of warranty)

Due to multiple possibilities for disturbing influences of a real control path, we cannot accept any liability for secondary damages caused by faultily determined values. Therefore it is essential to verify all values automatically determined before loading them into the control loop.

4.4.7.3 Process of the automatic determination of the load characteristic value (load identification)

- Please click on "unknown: default values are used" in the configuration wizard in the "External moment of inertia" window.
\bullet After the configuration download, you can enter directly, that the optimization window is to be opened.
\bullet In the Commissioning window (left at the bottom) change to commissioning mode.
- Finally enter the values of the excitation signal and of the test movement in the parameter window.
Parameters of the excitation signal:
- Amplitude of the excitation signal in \% of the motor reference current Only an amplitude value causing a distinct disturbance can give a usable result.
\bullet permissible following error In order to avoid a following error caused by the excitation signal, the permissible following error must be increased for the measurement if necessary.
- Selection of the test movement: inactive, reverse, continuous
- Parameterizing of the test movement if necessary
- Now energize drive and open load identification window in the commissioning window.

Caution! Safeguard the travel range before energizing!
 - Starting the load identification.

Caution! The drive will perform a jerky movement during load identification!

- After the measurement, the values can be accepted. Depending on the application, 2 measurements for minimum external load and maximum external load are recommended.

4.4.7.4 Tips

Tip	Problem	Measures
1	Speed too low (with reverse operation)	Increase maximum speed and adapt travel range*
2	Speed too low (with continuous operation)	Increase maximum speed
3	Test movement missing	A test movement is important for drives with high friction or with mechanical slack points (play).
4	No error detected	Please note the boundary conditions (see on page 232).
5	Speed too low and amplitude of the excitation signal too small (with reverse operation)	Increase amplitude of the excitation signal; increase maximum speed and adapt travel range*
6	- Speed too low and - amplitude of the excitation signal too small (with continuous operation)	Increase amplitude of the excitation signal; increase maximum speed.
7	- Test movement missing - amplitude of the excitation signal too small	- Increase amplitude of the excitation signal or / and - activate an appropriate test movement
8	amplitude of the excitation signal too small	Increase the amplitude of the excitation signal.
9	Following error occurred	Increase the parameter "permissible following error" or decrease the amplitude of the excitation signal.

*if the travel range is too short, the speed is not increased, as the drive does not reach the maximum speed.

4.4.8. Alignment of the analog inputs

In this chapter you can read about:

Signal processing of the analog inputs... 235
There are two possibilities to align the analog inputs in the optimization window:
-Wizard-guided under commissioning: Commissioning functions (click on the yellow triangle with the left mouse button:

Attention"

This wizard guided automatic alignment does not work if you bridge Ain+ with Ground for the alignment!
In this case, please make a manual alignment as described below.
or

- by directly entering under optimization: Analog Input

4.4.8.1 Offset alignment

Performing an offset alignment when working with the $\pm 10 \mathrm{~V}$ analog interface in the optimization window under optimization: Analog input Offset [170.4].
Enter the offset value for OV input voltage.
The currently entered value is shown in the status value "analog input" (optimizing window at the top right) (unit: $1 \equiv 10 \mathrm{~V}$). Enter this value directly with the same sign as offset value.
The status value "analogue input" shows the corrected value.

4.4.8.2 Gain alignment

Performing an offset alignment when working with the $\pm 10 \mathrm{~V}$ analog interface in the optimization window under optimization: Analog input: Gain [170.2].
A gain factor of 1 has been entered as default value.
The currently entered value is shown in the status value "analog input" (optimizing window at the top right).
The status value "analogue input" shows the corrected value.

4.4.8.3 Signal processing of the analog inputs

B: Continuative structure image (see on page 227)

4.4.9. C3 ServoSignalAnalyzer

In this chapter you can read about:

ServoSignalAnalyzer - function range ... 236
Signal analysis overview.. 237
Installation and activation of the ServoSignalAnalyzer ... 238
Analyses in the time range... 239
Measurement of frequency spectra... 242
Measurement of frequency responses ... 245
Overview of the user interface ... 251
Basics of frequency response measurement .. 264

4.4.9.1 ServoSignalAnalyzer - function range

The function range of the ServoSignalAnalyzer is divided into 2 units:

Analysis in the time range

This part of the function is freely available within the Compax3 ServoManager. The Compax3 ServoManager is part of the Compax3 servo drive delivery range.

Analysis in the frequency range

This part of the function requires a license key which you can buy (see on page 238).

The license is a company license and must only be bought once per company. For each PC you need however an individual key, which you can request individually.

4.4.9.2 Signal analysis overview

The ServoSignalAnalyzer offers three basic methods of analyzing systems:

- Analysis in the time range by measuring the step response
- Spectral analysis of individual signals
- Measurement of frequency response (Bode diagram) of the position control or of individual parts of the control as well as of the control path
These functions are available in the Compax3 ServoManager after the activation (see on page 238) with the aid of a system-dependent key.
You do not require expensive and complex measurement equipment -> a Compax3 device and a PC will do!

Basic structure of the signal analysis

Systems / signals

Depending on the kind of measurement, the SignalAnalyzer can help analyze the most different signals and systems.

Signal generator

This allows to inject different excitation signals (step, sine and noise signals) into the control loop.

Superposed system

For different analyses, superposed systems must be manipulated in order to allow a measurement. After the measurement, the changes made for this purpose are reset

C3 software oscilloscope

With the aid of the software oscilloscope, the contents of different objects can be registered and be loaded into the PC for further analysis.

Control and signal processing

The control of the entire measurement as well as the processing of the uploaded sample data are made in the PC.

4.4.9.3 Installation and activation of the ServoSignalAnalyzer

- Compax3 with up-to-date controller board (CTP 17)
- Firmware version R06-0 installed
- Execution of the C3 ServoManager Setup (on CD)
- If the firmware is too old => update with the aid of the firmware from the CD

Activation

In order to being able to use the analysis functions in the frequency range (for example frequency response measurement), a software activation is required.

Please observe:

The activation is only valid for the PC on which it was performed!

Caution!: If the PC disposes of network adapters which are removed at times (e.g. PCMIA cards or notebook docking stations), these adapters should be removed before generating the key!

In order to activate the ServoSignalAnalyzer, please follow these steps:

- Start the Compax3 ServoManager.

- Select the Select the C3 ServoSignalAnalyzer in the function tree under optimization.
In the right part of the window you can see the note that no key file was found.
- A double click on the preselected C3 ServoSignalAnalyzer will generate a system-dependent key.

Hardware-Key to get a user licence for

 Parker's ServoSignalAnalyzer529779B137E89DFFEF883CC0E991C3837203A399A9ABCC709A97295487
The key was copied to the clipboard
Please send the key via email to Parker

OK

- Acknowledge with OK and enter the key, which is on your clipboard, into an e-mail, which you please send to eme.ssalicence@parker.com (mailto:eme.ssalicence@parker.com).
- After receipt of the reply, copy the attached file "C3_SSA.KEY" into the C3 ServoManager directory (C:
Programs
Parker Hannifin
C3Mgr2
).
$\bullet=>$ the software is activated.

4.4.9.4 Analyses in the time range

Selection and parameterization of the desired analysis function

Exemplary step function

step Value = Step Size
The following functions are available:

Position demand value step: For analysis of the demand value behavior of the position control

Step value < (admissible motion range / 2)

=> even a 100\% overshoot does not incite an error message

Speed demand value step: For analysis of the demand value behavior of the speed control

The position control is switched off during the measurement, this might lead in exceptional cases to a slow drift of the position.
Furthermore you should make sure that the selected speed step value corresponds to the parameterized admissible motion range.

Step value < (admissible motion range / time of measurement)
 with time of measurement $>2 \mathrm{~s}$

Current demand value step: For analysis of the demand value behavior of the current control

The current setpoint jerk is set at the end of the oscilloscope recording time, but is reset to 0 after max. 50 mS .

Caution!

- Many systems are not stable without control!
- Position as well as speed control are switched off during measurement =>
no measurement on $\mathbf{z - a x e s !}$

Disturbance torque / force step response: For analysis of the disturbance value behavior of the control

The step of an external disturbance force is simulated and the reaction of the controller is registered.

Shaker function

For this, a sine signal is injected to the current which is used to excite the mechanic system. This allows to analyze the oscillation behavior - what oscillates at which frequency.

Basic settings of the analysis functions:

Maximum torque / maximum current / maximum speed (display):

This is used as a lead for the selection of a suitable step value and indicates which maximum step value is possible.

Step value:

Gives the value of a step.

Permissible motion range (+/-):

- Indication, in which position window the axis may move during the analysis.
- This range is not left even in the event of an error.
- If the drive approaches the limits of the motion range, the controller will decelerate so that the drive will come to a standstill within the permitted motion range. The maximum permitted velocity is used to calculate the deceleration ramp, therefore the drive stops even before reaching the range limits and reports an error.
- Please make sure that a sufficiently large movement is set for the measurement and that it will be reduced by a high maximum permitted velocity.
- The motion range monitoring is especially important during current step responses, as position as well as speed control are deactivated during the measurement.

Max permitted speed

When exceeding this value, an error is triggered, the controller decelerates and reports an error.
When measuring the velocity setpoint jerk, the maximum permitted velocity is set to twice the step height.

Setting and automatic start of the oscilloscope:

After pressing "accept entries", the parameters of the oscilloscope (such as scanning time and the assignment of the individual channels) are automatically set to default values according to the respective step value.
When starting the step function, the oscilloscope is automatically started.

Start of the measurement

The start of the step function is made with the aid of the highlighted button.

4.4.9.5 Measurement of frequency spectra

Please note that you require a license key (see on page 238, see on page 236) for this application!

In this chapter you can read about:
Functionality of the measurement.
Leak effect and windowing.. 243

Functionality of the measurement

Measurement of the spectral analysis

During the spectral analysis of scanned signals with the aid of the discrete Fourier transformation, a so-called frequency resolution (Df) results, Df being $=\mathrm{fA} / \mathrm{N}$, independently of the scanning frequency (f A) and of the number of measurement values used (N).
The spectra of scanned signals are only defined for frequencies, which are an integer multiple of this frequency resolution.

Interpretation of the frequency spectrum

Leak effect and windowing

If frequencies not corresponding to the frequency resolution are present in the analyzed spectrum, the so-called leak effect can be caused.

Display of the leak effect with the aid of a 16 point discrete Fourier transformation

Complete oscillation period in the scanning period

FFT

Envelope without leak effect

Non complete oscillation period in the scanning period

Sine at 200 Hz without windowing
Consequence of the leak effect shown at the example of a sine signal.
(fA $=4000 \mathrm{~Hz} ; \mathrm{N}=500$; $=>\Delta \mathrm{f}=8 \mathrm{~Hz}$
$f 0=200 \mathrm{~Hz}=25^{*} \Delta f$ frequency corresponds to the frequency-resolution
spectrum cumulative

The sine frequency is exactly on a multiple of the frequency resolution $(200 \mathrm{~Hz}$ / $8 \mathrm{~Hz}=25$). The spectrum is clearly separated and there are no leak effects visible.

Sine at 204Hz

$\Delta \mathrm{f}=8 \mathrm{~Hz} / \mathrm{fO}=204 \mathrm{~Hz}=25.5 \cdot \Delta \mathrm{f} /$ frequency does not correspond to the frequency resolution!
The sine frequency has only minimally changed, due to which it does, however, no longer match the frequency resolution $(204 \mathrm{~Hz} / 8 \mathrm{~Hz}=25.5)=>$ leak effect Two consequences are visible:

The spectrum is faded in the ranges at the right and at the left of the sine frequency. In this range, an amplitude is displayed, even though these frequencies are not contained in the real signal.

- The height of the peak of the sine frequency is reduced, => it seems as if the signal energy is leaking out and distributing over the spectrum. This explains the term leak effect.

Windowing

With the aid of the windowing, leak effects can be avoided. There are many different kinds of windowing, who do all have the same restrictions.

- windowing reduces the total energy of the analyzed signal, which results in a reduced amplitude of all measured frequencies.
- Individual frequency peaks do not appear so sharp and narrow as with measurements without windowing.

Sine at $\mathbf{2 0 0 H z}$ and $\mathbf{2 0 4 H z}$ with Hanning windowing

4.4.9.6 Measurement of frequency responses

Please note that you require a license key (see on page 238, see on page 236) for this application!

In this chapter you can read about:

Safety instructions concerning the frequency response measurement........................... 245
Functionality of the measurement.. 245
Open/Closed Loop frequency response measurement .. 247
Excitation Signal .. 248
Non-linearities and their effects... 248

Safety instructions concerning the frequency response measurement

During the measurement of the frequency response, the control is changed and influenced in multiple ways. You should therefore respect the following notes:

- During the measurement, the entire system is excited via a broad frequency spectrum. This might damage especially sensitive components (such as lenses) The risk increases with the extent of the excitation. In addition, natural mechanical frequencies may cause an increased excitation of individual components.
- The measurement of the frequency response can only be made in the setup mode with energized controller.
- During the current measurement (between start and stop of the measurement), no write flash may be executed.
- In the event of a break in communication during the measurement, the controller must be switched off and then on again in order to reestablish the original status.
- Changes of the controller parameters during the measurement are not permitted. Those may be overwritten by standard values when the measurement is terminated.

Functionality of the measurement

Basic structure of a frequency response measurement

In general, the analysis of the dynamic behavior of a system is made by analyzing the input and output signals.
If you transform the input signal as well as the output signal of a system into the range (Fourier transformation) and then divide the output signal by the input signal, you get the complex frequency response of the system.

$$
\begin{aligned}
G(s)=\frac{Y(s)}{U(s)} & \\
& \\
& y(t) \xrightarrow{F} Y(s) \\
\text { with } & u(t) \xrightarrow{F} U(s)
\end{aligned}
$$

A problem are, however, superimposed systems (the control)
Course of the measurement

- Superimposed controls are switched of (open Loop) or attenuated
- The excitation signal is injected in front of the system to be measured with the aid of the signal generator. Wait, until the system settled.
- Execution of the measurement: Registration of input and output signal with the aid of the oscilloscope.
- Upload of the measurement values from the controller into the PC.
- Processing of the measurement values into a frequency response
- If a cumulated measurement is configured: Averaging over several frequency responses.
During cumulated measurement, an average is taken over all measurements in the result memory and the result is then put out.

Open/Closed Loop frequency response measurement

In order to be able to analyze the transmission behavior of subordinate systems (such as for example speed control, current control or mechanical system), the influence of the superposed controls on the measurement must be avoided.

Influence of a superposed system on the frequency response measured

In the simplest case, the superposed controls are switched off completely (Open Loop) This provides the best measurement results due to the elimination of any influence caused by the superposed controls.
This is, however, rarely possible for reasons of safety or feasibility.

Caution!

- Many systems are not stable without control!
- Position as well as speed control are switched off during measurement =>
no measurement on z-axes!

If you want to analyze for example the mechanic system of a z-axis, the position control as well as the speed control must remain active.
In systems subject to friction it may be necessary in order to improve the quality of the measurement, to move the system with a superimposed speed (see on page 249), which is however only possible with a closed loop measurement.

Influence of an active superposed control on the result of the measurement

At the left without, at the right with the influence of the superposed control
In order to attenuate the influence of the superposed controls, the controller bandwidth is reduced to such an extent, that their influence on the measurement is negligible.

Excitation Signal

In order to be able to analyze the behavior of the system at individual frequencies, it is necessary that these frequencies can be measured in the input signal as well as in the output signal. For this, a signal generator excites all frequencies to be measured. For this applies, that the signal noise distance of the measurement is the larger, the larger the excitation of the system.
High noise distance => low influence of disturbances on the measurement.
For this, an excitation signal is injected in front of the system to be measured.
The power (amplitude) of the excitation signal can be set.
Start with a small amplitude and increase the amplitude slowly during the current measurement until the result of the measurement shows the desired quality.

Influence of the excitation amplitude on the quality of the measurement results

Left: Too small amplitude of the excitation signal (7.3 mA)
Right: Suitable amplitude of the excitation signal (73mA)
In the case of non-linearities in the system, an increase in the excitation may however lead to a decline of the quality of the measurement (see on page 248).

Non-linearities and their effects

In this chapter you can read about:
Attenuation of the excitation amplitude
Shifting the working point into a linear range
Non-linearities in mechanical systems are for example due to friction, backlash or position-dependent transmissions (cams and crankshaft drives). In general, the frequency response is only defined for linear systems (see 7.2 (see on page 265)). What happens in the frequency range in the event of a non-linear system, is shown below.

Signal amplitude too high => non-linearity in the signal range

Due to the non-linear transmission behavior of the system, many "new" frequencies were generated in the output signal. In the frequency response, only one change of the frequency present in the input signal can be displayed meaningfully. => The frequencies generated in the spectrum of the output signal lead to a deterioration of the measured frequency response.
There are however two possibilities to make successful measurements of frequency responses in spite of non-linearities present:

Attenuation of the excitation amplitude

Signal amplitude too small => no non-linearity in the signal range

The signal range is reduced so that approximately linear conditions are valid. The results of the measurement will then display the dynamic behavior at the working point.

Example cam drive:

If the drive moves considerably (e.g. 180°) during the measurement, the behavior of the system will change greatly over this range => caused by non-linearities in the signal range.
An inexact measurement is the result.
If the excitation is reduced so that the drive will move only by a few degrees, the behavior of the system at this working point will be approximately constant.
An exact measurement is the result.

Shifting the working point into a linear range

Signal amplitude large with offset => no non-linearity in the signal range

For this, the signal range is shifted so that approximately linear conditions are valid => the results of the measurement show the dynamic behavior at the working point.

Example rubbing caused by friction:

In systems subject to a distinct transition between rubbing caused by friction and sliding friction, the rubbing force will reduce abruptly as soon as the drive is moved ($v>0$). With a motor at standstill, the excitation signal will cause a multiple passing through the range of rubbing friction during measurement. Due to the non-linearity in the signal range, the resulting measurement will be inexact.
If the drive moves, however, fast enough during the measurement, so that the speed will not become zero during the measurement, the system remains in sliding friction and a precise measurement can be obtained.

Optimal measurement with rubbing friction

$\mathrm{V}_{\text {test move: }}$ Speed of the test movement
$V_{\text {stimulation }}$ Speed of the excitation signal static friction: Static friction

Example backlash: (for example in gearboxes)

Here, non-linearities are caused, if the tooth edges will turn from one side to the other during measurement. The reason for this is a change of the sign of the force transmitted by the gearbox.
In order to avoid this, you can try to transmit a constant torque by keeping a constant speed and to avoid a change of the sign during the measurement by choosing a relatively small excitation amplitude.

4.4.9.7 Overview of the user interface

(1) Selection of the signal or system to be measured (see on page 251)
(2) Frequency settings (see on page 255)
(3) Other settings (see on page 257)
(4) Operating and status field (see on page 260)
(5) Display of the measurement result (see on page 262)
(6) Display of the measurement point at the cursor position (see on page 263)

In this chapter you can read about:
Selection of the signal or system to be measured. .. 251
Frequency settings ... 255
Speed control .. 256
Other settings .. 257
Operating and status field... 260
Display of the measurement result.. 262
Display of the measurement point at the cursor position ...

Selection of the signal or system to be measured.

In this chapter you can read about:
Current control... 251
Mechanical system .. 252
Position control... 253

With the aid of the tree structure, you may select what you want to measure. Here, the selection is made, if a frequency spectrum or a frequency response is to be measured.
The shown structures are simplified in such as all feedbacks are displayed without special transmission behavior. This is surely not the case in reality, serves however a better overview.

Current control

Closed current control

Shows the dynamic behavior of the closed current control.
=> How a signal on the current demand value is transmitted to the current actual value.
(response)

Signal generator
Position controller
actual position
desired position
Velocity controller
actual velocity
Current controller
actual current
current controlled system
f: disturbance torque
velocity controlled system
position controlled system
Frequency response measurement

Signal Generator
Lageregler
Lageistwert
Lagesollwert
Geschwindigkeitsregler
Geschwindigkeitsistwert
Stromregler
Stromistwert
Stromregelstrecke
Störmoment
Geschwindigkeitsregelstrecke
Lageregelstrecke
Frequenzgangmessung

Application:

During the optimization of the current control for verification

- for the design of superposed controllers.

Mechanical system

Current to velocity

Shows the dynamic behavior between the measured current actual value and the velocity actual value

Application:

- for the analysis of the dynamic behavior of the mechanic system

Current to position

Shows the dynamic behavior between current actual value and position actual value.

- for the analysis of the dynamic behavior of the mechanic system

Position control

Closed position control

Shows the dynamic behavior of the closed position control.
=> How a signal on the position demand value is transmitted to the position actual value.

Application:

For the design of superposed controllers or systems.

- For the verification of the obtained controller speed during optimization
- for the revision of the controller design of the position control

open position control

Shows the dynamic behavior of all components in the position control loop, but without closing it.

\bullet For the graphic design of the position control.

Compliance of Position control

Shows the dynamic disturbance value behavior of the position control.
=> which dynamic influence does a disturbance torque have on the following error. The disturbance toque is injected as disturbance current => this corresponds to the effect of a disturbance torque f

Signal generator
Position controller
actual position
desired position
Velocity controller
actual velocity
Current controller
actual current
current controlled system
f: disturbance torque
velocity controlled system
position controlled system
Frequency response measurement

Signal Generator
Lageregler
Lageistwert
Lagesollwert
Geschwindigkeitsregler
Geschwindigkeitsistwert
Stromregler
Stromistwert
Stromregelstrecke
Störmoment
Geschwindigkeitsregelstrecke
Lageregelstrecke
Frequenzgangmessung

Application:

- Verification of the dynamic disturbance value behavior of the position control.
- Which following error generates a sinusoidal disturbance torque / disturbance current with the frequency $f Z$?
-The frequency response of the compliance corresponds to the disturbance step response in the time range

Frequency settings

(1) start frequency

- This is the smallest frequency at which is still measured. During the measurement of frequency spectrum and noise frequency response this results automatically from the bandwidth and is only displayed as an information.

(2) End (bandwidth)

- This corresponds to the highest frequency which is measured. Start frequency as well as the frequency resolution can be varied with the aid of the bandwidth for frequency spectrum and noise frequency response.

(3) Frequency resolution (see on page 242)

- During the measurement of frequency spectrum and noise frequency response this results automatically from the bandwidth and is only displayed as an information.

Speed control

Closed velocity control

Shows the dynamic behavior of the closed velocity control.
=> How a signal on the velocity demand value is transmitted to the velocity actual value.

Application:

- During the optimization of the velocity control for verification
\bullet For the design of superposed controllers.

Open velocity control

Shows the dynamic behavior of all components in the velocity control loop, but without closing it.

Application:

For the graphic design of the velocity control.

Compliance of velocity control

Shows the dynamic disturbance value behavior of the velocity control. => which dynamic influence does a disturbance torque have on the control deviation of the velocity control.
The disturbance toque is injected as disturbance current => this corresponds to the effect of a disturbance torque f

Application:

- Verification of the disturbance value behavior of the velocity control
-Which velocity deviation generates a sinusoidal disturbance torque / disturbance current with the frequency fZ ?
- The frequency response of the compliance corresponds to the disturbance step response in the time range

Other settings

(1) Excitation

Serves to set the excitation signal of the frequency response measurement.

(2) Permissible following error (only for frequency response measurement)

The resulting following error is increased by the injection of the excitation signal during the frequency response measurement. In order to allow for this, the permissible following error window can be enlarged so that the measurement can be made. After the end of the measurement, this is reset to the original value.

(3) Selection of the kind of analysis of the measurement results

Depending on the fact whether frequency spectra or frequency responses are measured, the following types of analyses are available:

For frequency spectra:

-(a) Spectrum
-(b) Spectrum cumulated

- (c) cascade diagram

For frequency responses:

- (d) noise frequency response
-(d) noise frequency response cumulated

Non cumulated measurement (a \& d)

The measured data are displayed directly. This is especially suitable if you wish to analyze the effects of changes on the measurement results directly and promptly. The disadvantage is however a smaller noise distance (quality) and an increased sensitiveness of the measurement towards unique disturbances.

Cumulated measurement (b\&e)

An average is taken from all measurements in the result memory. This reduces the influence of random signals and disturbances extremely (improvement of the quality). The number of measurements from which the average is taken, is set with the Size of the result memory (see on page 260).

Comparison of two frequency spectra without and with cumulation

Cascade diagram (c)

Frequency spectra are displayed subject to time. The information on the value of the signal is color-coded.

Cascade diagrams of the velocity signal during an acceleration process
Frequency spectrum

This kind of display is suitable for the analysis of temporal changes in the measured spectrum.

Operating and status field

(1) Start and Stop of the measurement

(2) Status display

Current status of the measurement or of the controller (if no measurement is taking place).

(3) Progress of the registration of the signals in the controller

The time of registration of the signals in the controller itself can, depending on the bandwidth and the kind of measurement, take up to one minute.
(4) status of the activity of the different partitions of the measurement

a: Registration of the measurement in the controller
b: Upload of the measurement from the controller to the PC
c: Processing the measurement in the PC

(5) Different settings and options

Functions available in a pull-down menu:
Open superimposed control loops (see on page 247)

accept load force

This serves, when opening the velocity controller, to accept the load which the controller has provided at the time of switching off => a z-axis does not drop down abruptly.

Measurement synchronous to the test movement

If this option is selected, it is ensured during the measurement, that the sampling does not take place in the turning point during a movement.
Unless frequencies are generated due to the deceleration/acceleration of the drive, which influence the measurement.

Result memory

In the result memory, the results of the N last measurements are kept. This is important for the display of the cumulated measurement and for the cascade diagram. The larger the memory, the "older" the results still used. When the contents is deleted, all old measurements are discarded and do no longer influence the new results.

Windowing (see on page 243)

Here you can select different windowing modes for the measurement of frequency spectra. As default, no window is used.

Save measure to file

The currently displayed measurement result is stored and can be uploaded later into the ServoSignalAnalyzer. This does, however, not apply to the cascade diagram display.

Open measure from file

Here you can reload the measurements memorized before. You have the possibility to load up to four measurements subsequently and display them together in a graphic display.

Copy measurement to clipboard as graphic display.

The currently displayed measurement result is copied as pixel graphic (e.g. BMP) to the clipboard.

Display of the measurement result

Frequency spectra

Frequenz-Spektrum kumuliert

Bode diagrams: Value and phase

By clicking with the left mouse button on the legend, this can be shifted by 90°. By clicking on the color bar, the color of the respective graph can be modified.

Cascade diagrams

By clicking with the left mouse button on the color scale, you can change between autoscale mode and fixscale mode.

AutoScaleMode:

In this mode, the scaling of the color scale is adapted automatically so that all values can be displayed.

FixScaleMode:

Here, the scaling is fixed.
=> If, for instance, a considerably higher value than before is to be displayed, it is simply displayed like the former maximum (red).

Display of the measurement point at the cursor position

The cursor is set by clicking on the left mouse button. All measurement data of the selected cursor position (frequency) are displayed in the "cursor" operating field.

4.4.9.8 Basics of frequency response measurement

In the drive and control technology, the display of signals and systems in the frequency range is often the best possibility to solve different tasks.
In this chapter you can read about:
Distinction between signals and systems... 264
Linear Systems (LTI System).. 265
Mechanical system
Resonance points and their causes ..

Distinction between signals and systems

Defined objects and their interactions that can be combined to a whole by a plausible distinction from their environment (i.e. the complex reality) are called a system.

Example electric motor

This consists of a multitude of different components, but the function and the behavior of a motor can be described as a whole without describing each individual component and their interactions separately.
If the motor is energized, it will generate a torque at the motor shaft.

Current is therefore a signal, which causes at the input of the system motor a change of its torque output signal.
In order to register and process such signals in the controller, they are digitized and read in with the so-called scanning frequency (fA). Thus the physical signal was converted into a finite sequence of numbers, which can be processed in the controller.

Linear Systems (LTI System)

Further explanations are based on the concept of so-called linear systems. This means that doubling the input value means that the portion of the output value influenced by it is also doubled. This, for instance, is not the case in the event of influence due to limitations, friction and backlash.
=> those are called non-linear systems, which can not be analyzed with the methods described here (or only with difficulties).
One of the most important properties of linear systems is that a sine signal, which is put through a linear system, is still a sine signal at the output, which differs from the input signal only in value and phase.
When a signal passes a LTI system, no new frequencies are generated.
Input and output signals of a linear system

If you know the value $(\mathrm{V}(\mathrm{fO})$) as well as the phase position $(\mathrm{u}(\mathrm{fO}))$ for all frequencies, the LTI system is completely defined.
Such a graph of value and phase position in dependence of the frequency, is called frequency response or bode diagram.
=> only LTI systems can be analyzed with the aid of frequency responses.
Frequency response / bode diagram

The frequency response shows the amplification (value) and the phase shift (phase), which a signal is submitted to when passing through a system.

The displayed bode diagram allows the following conclusions:
If a sine with 60 Hz and an amplitude of 1 A is present at the input, a sine delayed by 94° and an amplitude of $0.01 \mathrm{~m} / \mathrm{s}$ will result at the output.

Mechanical system

Frequency response of a mechanic system: Current - velocity of a motor

The outlined course at the end of the measurement range does not permit statements on the system measured due to disturbances. Due to the attenuation of the signals increasing with the frequency, the sensitiveness of the measurement to disturbances (signal to noise ratio) increases with a rising frequency. The value as well as the phase response of the displayed frequency response are "disturbed" at the same intensity, this shows, that disturbances are the reason.

The value response consists basically of a straight, which declines with a slope of $-20 \mathrm{~dB} /$ decade $(-20 \mathrm{~dB} /$ decade $=>$ per tenfold increase of the frequency, the value decreases also by factor ten.
The phase response remains however almost constantly at -90° over a relatively large range.
In control technology, this is called integrating behavior (l-behavior).
the l-behavior can be explained as follows.
The measured current is proportional to the motor force and thus also to the acceleration of the driven mass. As the velocity is calculated from the integrated acceleration, the measured system looks as follows:

Input value is the current actual value, output value is the velocity actual value

Resonance points and their causes

In this chapter you can read about:
Rotary two mass system
Linear two mass system
Toothed belt drive as two mass system

Mechanical system with a resonance point

Bode-Diagramm kumuliert

fARes: Anti resonance frequency
fRes: Resonance frequency
The displayed change of the frequency response (resonance point), has its cause in a so-called two mass system (caused by the elastic coupling of two masses).

Hint As, upon closer examination, each mechanic coupling shows a certain elasticity, it is no the question if there is a resonance point, but at which frequency it is and how well it is attenuated.

Rotary two mass system

The shown system corresponds for instance to a motor with a flywheel coupled via a shaft. Hereby J1 corresponds to the motor moment of inertia and J2 to the moment of inertia of the flywheel.

Calculation of the resonance frequencies in the rotary system with a hollow shaft as elastic coupling element

$$
\begin{aligned}
& D=\int_{r_{I}}^{r_{A}} \frac{2 \cdot \pi \cdot G}{l} \cdot r^{3} \cdot d r=\frac{G \cdot \pi \cdot\left(r_{A}^{4}-r_{I}^{4}\right)}{2 \cdot l} \\
& f_{A \operatorname{Res} s}=\frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{D}{J_{2}}} \quad f_{\operatorname{Re} s}=\frac{1}{2 \cdot \pi} \cdot \sqrt{D \cdot\left(\frac{1}{J_{1}}+\frac{1}{J_{2}}\right)}
\end{aligned}
$$

G	Shear modulus of the material used $\left[\mathrm{N} / \mathrm{m}^{2}\right]$ (e.g. approx. $80750 \mathrm{~N} / \mathrm{mm}^{2}$ for steel)
D	Torsional rigidity in $[\mathrm{m} / \mathrm{rad}]$
rA	Outer radius of the hollow shaft
rl	Inner radius of the hollow shaft
I	Length of the hollow shaft

Linear two mass system

Resonance frequencies in the linear system

$$
f_{A \mathrm{Re} s}=\frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{D}{m_{2}}} \quad \quad f_{\mathrm{Re} s}=\frac{1}{2 \cdot \pi} \cdot \sqrt{D \cdot\left(\frac{1}{m_{1}}+\frac{1}{m_{2}}\right)}
$$

D	Rigidity in $[\mathrm{N} / \mathrm{m}]$
m 1	e.g. motor mass
m 2	e.g. load mass

Toothed belt drive as two mass system

In toothed belt drives, the toothed belt is the elastic coupling element. Its rigidity depends directly on the lengths 11 and $I 2$ and changes in dependence of the position of the moved mass.

$$
\begin{aligned}
& D_{\text {spez }}=\frac{F_{\max }}{0,004} ; \quad I_{2}=2 \cdot I_{\text {Achse }}-I_{1} \\
& D_{1}=\frac{D_{\text {spez }}}{I 1} ; \quad D_{2}=\frac{D_{\text {spez }}}{I 2} ; \quad D=D_{1}+D_{2}=\frac{2 \cdot D_{\text {spez }}}{I_{1} \cdot\left(2-\frac{I_{1}}{I_{\text {Achse }}}\right)}
\end{aligned}
$$

$$
f_{\text {ARes }}=\frac{1}{2 \pi} \cdot \sqrt{\frac{D}{m 2}} \quad f_{\text {Res }}=\frac{1}{2 \pi} \cdot \sqrt{D \cdot\left(\frac{1}{m_{2}}+\frac{\left(r_{\text {Zahnrad }}\right)^{2}}{J_{1} \cdot\left(i_{\text {Getriebe }}\right)^{2}}\right)}
$$

D	Total spring constant of the toothed belt drive
Dspez	Specific spring constant of the toothed belt used
D1	Spring rate of the belt length I1
D2	Spring rate of the belt length I2
iGearbox	Transmission ratio of the gearbox
IAxis	Length of the axis
J1	Moment of inertia of motor and gearbox
m2	translatory moved mass
rToothed wheel	Radius of the drive pinion

Here you can find examples as a movie in the help file.

4.4.10. ProfileViewer for the optimization of the motion profile

In this chapter you can read about:

Mode 1: Time and maximum values are deduced from Compax3 input values
Mode 2: Compax3 input values are deduced from times and maximum values.
You will find the ProfilViewer in the Compax3 ServoManager under the "Tools" Menu:

4.4.10.1 Mode 1: Time and maximum values are deduced from Compax3 input values

- The motion profile is calculated from Position, Speed, Acceleration, Deceleration, Acceleration Jerk and Deceleration Jerk
- As a result you will get, besides a graphical display, the following characteristic values of the profile:
-Times for the acceleration, deceleration and constant phase
- Maximum values for acceleration, deceleration and speed

4.4.10.2 Mode 2: Compax3 input values are deduced from times and maximum values

- A jerk-limited motion profile is calculated from the positioning time and the maximum speed / acceleration
- As a result you will get, besides a graphical display, the following characteristic values of the profile:
- the parameters Position, Speed, Acceleration, Deceleration, Acceleration Jerk and Deceleration Jerk
- Times for the acceleration, deceleration and constant phase
\bullet Maximum values for acceleration, deceleration and speed

Set deceleration and acceleration phase

The profile can be defined more exactly by entering the segmentation into deceleration and acceleration phase.
When setting 50% and 50%, a symmetrical design will result, the values for triangular operation are calculated, which is limited by the maximum speed.
The total of the percentage values may not exceed 100.
The percentage entries refer to the total positioning time.

Example:

4.4.11. Turning the motor holding brake on and off

Compax3 controls the holding brake of the motor and the power output stage. The time behavior can be set.

Application:

With an axis that is subject to momentum when it is halted (e. g. for a z-axis) the drive can be switched on and off such that no movement of the load takes place. The drive thereby remains energized during the holding brake response time. This is adjustable.

The power output stage current is de-energized by:

- Error or
- the control word
- the ServoManager

Thereafter the motor is braked to zero rotation speed on the set ramp.
When zero speed is reached, the motor is de-energized with the delay "brake closing delay time".

1: Motor powered
2: Motor de-energized
3: Open brake
4: Engage the brake
5: Brake closing delay time

The power output stage is enabled by:

- Acknowledge (after error) with the control word
- the ServoManager

The motor is energized with the delay "delay time for brake release": brake closing delay time >0 brake closing delay time < 0

1: Motor powered
2: Motor de-energized
3: Open brake
4: Engage the brake
5: Delay time for brake release (positive value)
6: Delay time for brake release (negative value)
A negative value (6) can be used to energize the motor and then to release the brake after the given time.

5. Communication

Here you will find the description of the fieldbus interfaces, which can be configured in the Compax3 ServoManager under the tree entry "configuring the communication".

Please note: The configuration of the process data (Mapping) is made wizard-guided with the Compax3 ServoManager.
If you perform the mapping directly via the master, you must go through this fieldbus wizard once; the Compax3 ServoManager will perform the necessary initializations.
In this chapter you can read about:
Compax3 communication variants .. 272
COM port protocol .. 281
Remote diagnosis via Modem.. 286
Profibus \& Profinet... 289
Compax3 - Objects ...

5.1 Compax3 communication variants

In this chapter you can read about:

PC <-> Compax3 (RS232).273
PC <-> Compax3 (RS485). 274
PC <-> C3M device combination (USB) 275
USB-RS485 Moxa Uport 1130 adapter 276
ETHERNET-RS485 NetCOM 113 adapter. 277
Modem MB-Connectline MDH 500 / MDH 504 278
C3 settings for RS485 two wire operation 279
C3 settings for RS485 four wire operation. 280

Overview of all possible communication modes between Compax3 devices and a PC.

5.1.1.

PC <-> Compax3 (RS232)
PC <-> Compax3 (RS232): Connections to a device
PC (RS232 COM)

PC (Virtueller ComPort)

Analoges Telefonnetz

5.1.2.

 PC <-> Compax3 (RS485)PC <-> Compax3 (RS485)

5.1.3. $\quad \mathrm{PC}$ <-> C3M device combination (USB)

PC <-> C3M device combination

5.1.4. USB-RS485 Moxa Uport 1130 adapter

PIN	RS-422/4-wire RS-485	2-wire RS-485
1	T×D-(A)	-
2	TXD+(B)	-
3	R×D+(B)	Data+(B)
4	R×D-(A)	Data-(A)
PIN	RS-422/4-wire RS-485	2-wire RS-485
5	GND	GND
6	-	-
7	-	-
8	-	-

The serial UPort 1130 USB adapter offers a simple and comfortable method of connecting an RS-422 or RS-485 device to your laptop or PC. The UPort 1130 is connected to the USB port of your computer and complements your workstation with a DB9 RS-422/485 serial interface. For simple installation and configuration, Windows drivers are already integrated. The UPort 1130 can be used with new or legacy serial devices and supports both 2 - and 4 -wire RS-485. It is especially suited for mobile, instrumentation and point-of-sale (POS) applications.
Manufacturer link http://www.moxa.com/product/UPort_1130_1130I.htm
Connection plan for Compax3S:

5.1.5. ETHERNET-RS485 NetCOM 113 adapter

Manufacturer link: http://www.vscom.de/666.htm (http://www.vscom.de/666.htm)

DIP Switch settings NetCom 113 for two-wire operation:
1ON 2ON 3off 4off (Mode: RS485 by ART (2 wire without Echo)
Communication settings C3S/C3M:

Object	Function	Value
810.1	Protocol	16 (two wire)
810.2	Baud rate	115200
810.3	NodeAddress	$1 . .254$
810.4	Multicast Address	

Connection plan NetCom113 <-> C3S :

Connection plan NetCom113 <-> C3M X31:

VetCom 113
C3M X31

5.1.6

Modem MB-Connectline MDH 500 / MDH 504

With the modems MDH500 and MDH504 manufactured by MB-Connectline, you can establish an independent connection. A virtual COM port is generated and the communication with the PC as well as the Compax3 takes place via RS232 or RS485.
It is not necessary to make any modem settings on the Compax3

5.1.7. C3 settings for RS485 two wire operation

C3 ServoManager RS485 wizard settings:

download with configuration in RS232 mode ${ }^{\circ}$!

Communication settings C3S/C3M:

Object	Function	Value
810.1	Protocol	16 (two wire)
810.2	Baud rate	115200
810.3	NodeAddress	$1 . .254$
810.4	Multicast Address	

5.1.8.
 C3 settings for RS485 four wire operation

C3 ServoManager RS485 wizard settings:
download with configuration in RS232 mode

Communication settings C3S/C3M:

Object	Function	Value
810.1	Protocol	$0(4$ wire $)$
810.2	Baud rate	115200
810.3	NodeAddress	$1 . .254$
810.4	Multicast Address	

5.2 COM port protocol

You can communicate with Compax3 in order to read or write objects via plug X10
(or X3 on the mains module of Compax3M) on the front via a COM port (max. 32 nodes).
As a rule 2 records are possible:

- ASCII record: simple communication with Compax3
- Binary record: fast and secure communication with Compax3 by the aid of block securing.

Switching between the ASCII and the binary record via automatic record detection.

```
    Interface settings (see on page 401)
Wiring RS232: SSK1 (see on page 376)
    RS485: as SSK27 (see on page 377) / RS485 is activated by +5V on X10/1.
    USB: SSK33/03 (only for Compax3M)
    In this chapter you can read about:
    RS485 settings values ................................................................................................. }28
    ASCII - record....................................................................................................... }28
```


5.2.1. RS485 settings values

If "Master=Pop" is selected, only the settings compatible with the Pops (Parker Operator Panels) made by Parker are possible.

Please note that the connected Pop has the same RS485 setting values.
You can test this with the "PopDesigner" software.
"Master=General" makes all Compax3 settings possible.
Multicast Address You can use this address to allow the master to access multiple devices simultaneously.

Device Address The device address of the connected Compax3 can be set here.
Baud rate Adjust the transfer speed (baud rate) to the master.
Cable type Please choose between two-wire and four-wire RS485 (see on page 59).
Protocol Adjust the protocol settings to the settings of your master.

5.2.2. ASCII - record

The general layout of a command string for Compax3 is as follows:
[Adr] command CR

Adr	RS232: no address RS485: Compax3 address in the range 0 ... 99 Address settings can be made in the C3 ServoManager under "RS485 settings"
Command	valid Compax3 command
CR	End sign (carriage return)

Command A command consists of the representable ASCII characters (0×21.. $0 \times 7 \mathrm{E}$). Small letters are converted automatically into capitals and blanks (0×20) are deleted, if they are not placed between two quotation marks.
Separator between places before and after the decimal is the decimal point (0x2E). A numeric value can be given in the Hex-format if it is preceded by the "\$" sign. Values can be requested in the Hex-format if the CR is preceded additionally by the "\$" sign.
Answer strings All commands requesting a numeric value from Compax3 are acknowledged with the respective numeric value in the ASCII format followed by a CR without preceding command repetition and following statement of unit. The length of these answer strings differs depending on the value.
Commands requesting an Info-string (e.g. software version), are only acknowledged with the respective ASCII character sequence followed by a CR, without preceding command repetition. The length of these answer strings is here constant.
Commands transferring a value to Compax3 or triggering a function in Compax3 are acknowledged by:
>CR
if the value can be accepted resp. if the function can be executed at that point in time.
If this is not the case or if the command syntax was invalid, the command is acknowledged with

! $x x x x C R$

The 4 digit error number $\mathbf{x x x x}$ is given in the HEX format; you will find the meaning in the appendix (see on page 335).
RS485 answer string When using RS485, each answer string is preceded by a "*"" (ASCII - character: $0 \times 2 \mathrm{~A}$).

Compax3 commands

Read object
RS232: O [\$] Index , [\$] Subindex [\$]
RS485: Address O [\$] Index , [\$] Subindex [\$]
The optional "\$" after the subindex stands for "hex-output" which means that an object value can also be requested in hex;
For example "O \$0192.2\$": (Object 402.2)

Write object

RS232: O [\$] Index , [\$] Subindex = [\$] Value [; Value2; Value3 ; ...]
RS485: Address O [\$] Index , [\$] Subindex = [\$] Value [; Value2; Value3 ; ...]
The optional "\$" preceding Index, Subindex and value stands for "Hex-input" which means that Index, Subindex and the value to be transferred can also be entered in hex (e.g. O \$0192.2=\$C8).

5.2.3. Binary record

The binary record with block securing is based on 5 different telegrams:

- 2 request telegrams which the control sends to Compax3 and
$\bullet 3$ response telegrams which Compax3 returns to the control.

Telegram layout

Basic structure:

Start code	Address A	Number of data bytes - 1	Data				Block securing	
SZ		L	D0	D1	...	Dn	$\mathrm{Crc}(\mathrm{Hi})$	Crc (Lo)

The start code defines the frame type and is composed as follows:

Bit		7	6	5	4	3	2	1	0
Frame type		Frame identification				PLC		Gateway	Address
RdObj	read object	1	0	1	0	X	1	X	X
WrObj	write object	1	1	0	0	X	1	X	X
Rsp	response	0	0	0	0	0	1	0	1
Ack	positive command acknowledgement	0	0	0	0	0	1	1	0
Nak	Negative command acknowledgement	0	0	0	0	0	1	1	1

Bits 7,6,5 and 4 of the start code form the telegram identification; Bit 2 is always "1".
Bits 3, 1 and 0 have different meanings for the request and response telegrams.
The address is only necessary for RS484.

Request telegrams

\rightarrow Compax 3

- the address bit (Bit $0=1$) shows if the start code is followed by an address (only for RS485; for RS232 Bit $0=0$)
- the gateway bit (Bit $1=1$) shows if the message is to be passed on.
(Please set Bit $1=0$, as this function is not yet available)
- the PLC bit (Bit $3=1$) allows access to objects in the PLC/Pop format

U16, U32: for integer formats (see bus formats: Ix, Ux, V2)
IEEE 32Bit Floating Point: for non integer formats (bus formats: E2_6, C4_3, Y2, Y4; without scaling)
With Bit $3=0$ the objects are transmitted in the DSP format.
DSP formats:
24 Bit = 3 Bytes: Integer INT24 or Fractional FRACT24
48 Bit = 6 Bytes: Real REAL48 (3 Byte Int, 3 Byte Fract) / Double Integer DINT48 / Double Fractional DFRACT48

Response telegram

Compax3 ->

- Bits 0 and 1 are used to identify the response
- Bit 3 is always 0

The maximum number of data bytes in the request telegram is 256 , in the response telegram 253.
The block securing (CRC16) is made via the CCITT table algorithm for all characters.
After receiving the start code, the timeout monitoring is activated in order to avoid that Compax3 waits in vain for further codes (e.g. connection interrupted) The timeout period between 2 codes received is fixed to 5 ms (5 times the code time at 9600Baud)

Write object - WrObj telegram

SZ	Adr	L	D0	D1	D2	D3 ... Dn	Crc(Hi)	Crc(Lo)
0xCX		n	Index(Hi)	Index(Lo)	Subindex	Value	0x..	0x..

Describing an object by a value.
Positive acknowledgement - Ack-telegram

SZ	L	D0	D1	Crc(Hi)	Crc(Lo)
0×06	1	0	0	$0 x .$.	0x..

Answer from Compax3 if a writing process was successful, i.e. the function could be executed and is completed in itself.

Negative acknowledgement - Nak - telegram

SZ	L	D0	D1	Crc(Hi)	Crc(Lo)
0×07	1	F-No.(Hi)	F-No.(Lo)	0x..	0x..

Answer from Compax3 if access to the object was denied (e.g. function cannot be executed at that point in time or object has no reading access). The error no. is coded according to the DriveCom profile resp. the CiA Device Profile DSP 402.

Read object - RdObj - telegram

SZ	Adr	L	D0	D1	D2	D3	D4	D5	\ldots	Dn	Crc(Hi)
0xAX	n	Index1(Hi)	Index1(Lo)	Subindex1	Index2(Hi)	Index2(L o)	Subindex2	\ldots	\ldots	$0 x .$.	0x..

Reading one or several objects
Answer-Rsp-telegram

SZ	L	D0 ... Dx-1	Dx ... Dy-1	Dy-D..	D ... D..	D ... Dn	Crc(Hi)	Crc(Lo)
0×05	n	Value1	Value 2	Value 3	Value ..	Value n	0x..	$0 x .$.

Answer from Compax3 if the object can be read.
If the object has no reading access, Compax3 answers with the Nak - telegram.

Example:

Reading object "StatusPositionActual" (0680.5):
Request: A5 030202 A8 05 E1 46
Response: 0505 FF FF FF FF FE 2D 07 B4
Writing into an Array (o1901.1 = 2350)
Request: C5 020807 6D 010009 2E 00000095 D5
Response: 06010000 BA 87

Block securing: Checksum calculation for the CCITT table algorithm
The block securing for all codes is performed via the following function and the corresponding table:
The "CRC16" variable is set to " 0 " before sending a telegram.

Function call:

```
CRC16 = UpdateCRC16(CRC16, Character);
```

This function is called up for each Byte (Character) of the telegram. The result forms the last two bytes of the telegram Compax3 checks the CRC value on receipt and reports CRC error in the case of a deviation.

5.3 Remote diagnosis via Modem

> Caution! | $\begin{array}{c}\text { As the transmission via modem may be very slow and interference-prone, the } \\ \text { operation of the Compax3 ServoManager via modem connection is on your } \\ \text { own risk! }\end{array}$ |
| :---: |
| The function setup mode as well as the ROLL mode of the oscilloscope are |
| not available for remote diagnosis! |
| It is not recommended to use the logic analyzer in the Compax3 IEC61131-3 |
| debugger due to the limited bandwidth. |

Requirements:

For modem operation, a direct and stable telephone connection is required. Operation via a company-internal telephone system is not recommended. In this chapter you can read about:

```
Structure.286
```

Configuration of local modem 1 287
Configuration of remote modem 2. 288
Recommendations for preparing the modem operation. 288

5.3.1. Structure

Layout and configuration of a modem connection ServoManager Compax3:

The green part of the drawing shows the proceeding for Compax3 release versions < R5-0!
The proceeding for Compax3 release versions < R5-0 is described in an application example (.../modem/C3_Appl_A1016_language.pdf on the Compax3 CD).

Connection Compax3 ServoManager <=> Compax3

The Compax3 ServoManager (1) establishes a RS232 connection with modem 1 (PC internal or external).
Modem 1 dials modem 2 via a telephone connection (3).
Modem 2 communicates with Compax3 (6) via RS232.

Configuration

Modem 1 is configured via the Compax3 ServoManager (1)
Modem 2 can be configured via Compax3 (on place), triggered by putting SSK31 (see on page 380) on X10. For this, the device must be configured before. This can be made locally before the system / machine is delivered with the aid of the Compax3 ServoManager (8).

5.3.2. Configuration of local modem 1

- Menu "Options: Communication settings RS232/RS485..." must be opened
- Select "Connection via Modem"
- Under "name" you can enter a name for the connection
- Enter the target telephone number.

Note: If an ISDN telephone system is operated within a company network, an additional " 0 " may be required in order to get out of the local system into the company network before reaching the outside line with an additional " 0 ".

- The timeout periods are set to reasonable standard values according to our experience.
- Select the modem type.
- For "user-defined modem", additional settings are only required, if the modem does not support standard AT commands.
Then you can enter special AT commands.
- Hint:When operating the local modem on a telephone system, it may be necessary to make a blind dialing. Here, the modem does not wait for the dialing tone.
- Select the COM interface where the modem is connected.
- Close the window and establish the connection with button 4 (open/close COM port).
- The connection is interrupted when the COM port is closed.
- Select the modem type.
- For "user-defined modem", additional settings are only required, if the modem does not support standard AT commands. Then you can enter special AT commands.
- Hint:When operating the local modem on a telephone system, it may be necessary to make a blind dialing. Here, the modem does not wait for the dialing tone.

5.3.3. Configuration of remote modem 2
 Settings in Compax3 under "configure communication: Modem settings":
 - Modem initialization = "ON": After the SSK31 modem cable has been connected, Compax3 initializes the modem
 - Modem initialization after Power On = "ON": After Power on of Compax3, the device initializes the modem
 - Modem check = "ON": a modem check is performed
 - The timeout periods are set to reasonable standard values according to our experience.
 - Select the modem type.
 - For "user-defined modem", additional settings are only required, if the modem does not support standard AT commands. Then you can enter special AT commands.
 \bullet Hint:When operating the local modem on a telephone system, it may be necessary to make a blind dialing. Here, the modem does not wait for the dialing tone.
 - In the following wizard window, a specific download of the modem configuration can be made.

Note:

If a configuration download is interrupted, the original settings in the non volatile memory of the Compax3 are still available.
You have to finish the communication on the PC side and to reset the Compax3 via the 24 V supply before you can start a new trial.

Reinitialization of the remote modem 2

Remove cable on Compax3 X10 and connect again!

5.3.4. Recommendations for preparing the modem operation

Preparations:

- Settings in Compax3 under "configure communication: Modem settings":
- Modem initialization: "ON"
- Modem initialization after Power On: "ON"
- Modem check: "ON"
- Deposit SSK31 cable in the control cabinet.
- Install modem in the control cabinet and connect to telephone line.

Remote diagnosis required:

- On site:
- Connect modem to Compax3 X10 via SSK31
- Modem is automatically initialized
- Local:
- Connect modem to telephone line
- Establish cable connection to modem (COM interface)
-Select "connection via modem" under "options: communication settings RS232/RS485...".
- Select modem under "selection"
- Enter telephone number
- Select COM interface (PC - modem)
- Establish connection with button 4 (open/close COM port).

5.4 Profibus \& Profinet

Notes on the configuration of the Profibus masterBefore configuring the Profibus master (e.g. S7), you will have to configure theCompax3 axis.
In the Profibus/Profinet window (see on page 289) of the configuration wizardyou will receive the status message "Profibus/Profinet Telegram" with theinformation on the telegram which can be set in the master/controller (PPO type).
In this chapter you can read about:
Profibus / Profinet configuration 289
Status machine 296
Cyclic process data channel 299
Acyclic parameter channel 312
TCP/IP communication with Profinet 317
5.4.1. Profibus / Profinet configuration
In this chapter you can read about:
Operating modes 289
Configuration of the process-data channel 290
Operating mode: Speed control 291
Operating mode: Direct positioning 293
Operating mode: Positioning with set selection 295
PKW parameter channel. 296
Error Reaction on Bus Failure 296
DCP fieldbus configuration wizard animation shown with Profibus as an example:

Due to continuous optimization, individual monitor displays may have changed. This does however hardly influence the general proceeding.

Following are described the input windows of the Profibus/Profinet configuration wizard.
Can be called up in the tree (Compax3 ServoManager, left window) under "configure communication".

5.4.1.1 Operating modes

The assignment of the process data channel (PZD) depends on the operating mode.
Make the selection between:

- Speed control:
via the PZD the nominal rotation speed is specified and the actual values are read back.

- Direct positioning (Position control):

via the PZD setpoint values (setpoint position, setpoint rotation speed, setpoint acceleration) are specified and actual values are read back.

- Positioning via set selection:

via the PZD sets are selected and started via the set address. The set table is previously written in with the aid of the C3 ServoManager.

5.4.1.2 Configuration of the process-data channel

You can use the Process Data Channel (PZD) to exchange actual and setpoint values cyclically between the Compax3 and the Profibus master / Profinet controller.
The PZD is adjusted separately for the following transfer directions:

- Profibus-Master / Profinet controller \Rightarrow Compax3
- Compax3 \Rightarrow Profibus-Master / Profinet controller set separately.
The control word 1 (Profibus Master / Profinet controller \Rightarrow Compax3) and the status word (Compax3 \Rightarrow Profibus-Master / Profinet controller) are always on the PZD.
The further assignment is configurable. The values available for selection depend on the selected operating mode.
The values assigned to the PZD appear in the selected order in the telegram and can be read or written at the respective address of the process image. Please take into consideration, how many words are assigned to the respective object.

PPO type / PKW type, telegram size

Depending on the configuration that is set, the resulting PPO type is displayed in the "Profibus telegram" wizard window (in the status line of the wizard window).
You can use this value for the configuration of the Profibus master.
With Profinet, you can read out the PKW type and the telegram size for setting in the Profinet Controller.

After this, the "Starting address" identifies the address at which the PZD will be placed on the input / output range of the master.

With Profinet, the PPO type is displayed, in the control and C3 configuration however, a distinction is made between acyclic channel and IO data and they are set individually.

5.4.1.3 Operating mode: Speed control

Layout of the telegram: Profibus-Master / Profinet-Controller-> Compax3

CW1	NSOLL_B(1)					
AW_{n}	$\mathrm{Aw}_{\mathrm{n}+2}$	$\mathrm{Aw}_{n+4} \stackrel{\mathrm{Aw}}{n+6} \mathrm{Aw}_{n+8} \quad \mathrm{Aw}_{n+10}$Possible assignment:		Aw_{n+12}	$\mathrm{Aw}_{\text {n }+14}$	$\mathrm{N}_{\mathrm{n}+16}$
		Abbreviation	Designation	Object No.	Assigned words	Assignment
		NNOM_B	Velocity setpoint value B (3 decimal places) *	1100.6	2	fixed
		Abbreviation	Designation	Object No.	$\begin{array}{\|l} \hline \begin{array}{l} \text { Assigned } \\ \text { words } \end{array} \\ \hline \end{array}$	Assignment
		CW1:	Control word 1	1100.3	1	fixed
		A_DIGITAL	Digital outputs O0 ... O3	140.3	1	optional
		-	Digital outputs of the M10/M12 option	133.3	1	optional
		-	Demand movement speed C (1 decimal place)*	1100.8	1	optional
		-	Commanded motion speed D (3 decimal places)*	1100.7	2	optional
		-	Setpoint acceleration A (no decimal place)	1111.10	1	optional
		-	Setpoint acceleration B (no decimal place)	1111.3	2	optional
			Setpoint deceleration A	1111.16	1	optional (only Profinet)
			Setpoint deceleration B	1111.4	2	optional (only Profinet)

Layout of the control word (see on page 303).

Layout of the telegram: Compax3 -> Profibus Master / Profinet Controller

ZSW1						
AW_{n}	Aw_{n+2}	$A w_{n+4} \quad A w_{n+6} \quad A w_{n+8} \quad A w_{n+10}$Possible assignment:		AW_{n+12}	Aw_{n+14}	$\mathrm{Aw}_{\mathrm{n}+16}$
		Abbreviation	Designation	Object No.	Assigned words	Assignment
		SW1:	Status word 1	1000.3	1	fixed
		-	Torque actual value (Fixed point format E2_6)	683.1	1	optional
		E_DIGITAL	Digital inputs 10 ... 17	120.3	1	optional
		-	Digital inputs of the M10/M12 option	121.2	1	optional
		NACT_B	Rotation speed actual value B (3 decimal places)*	681.9	2	optional
		-	Following error (3 decimal places)*	680.6	2	optional
		XACT_A	Actual position value A (3 decimal places)*	680.5	2	optional
			Status word 2	1000.4	1	optional
		NACT_A	Actual speed value A (1 decimal place)*	681.7	1	optional
		-	Last error	550.1	1	optional

* The values are transmitted as int16 (1 word) or int32 (2 words).

With 1 decimal place: Divide value by 10.
With 3 decimal places: Divide value by 1000.

Example:

PLC Value	Compax3 value	
1000	1.000	(3 decimal places)
10	1.0	(decimal place)

Layout of the Status word. (see on page 304)

5.4.1.4 Operating mode: Direct positioning

Layout of the telegram: Profibus-Master / Profinet-Controller -> Compax3

Possible assignment:

Abbreviation	Designation	Object No.	Assigned words	Assignment
XNOM_A	Position setpoint value A (3 decimal places)*	1100.6	2	fixed
Abbreviation	Designation	Object No.	Assigned words	Assignment
CW1:	Control word 1	1100.3	1	fixed
A_DIGITAL	Digital outputs O0 ... O3	140.3	1	optional
-	Digital outputs of the M10/M12 option	133.3	1	optional
-	Demand movement speed C (1 decimal place)*	1100.8	1	optional
-	Commanded motion speed D (3 decimal places)*	1100.7	2	optional
-	Setpoint acceleration A (no decimal place)	1111.10	1	optional
-	Setpoint acceleration B (no decimal place)	1111.3	2	optional
	Setpoint deceleration A	1111.16	1	optional (only Profinet)
	Setpoint deceleration B	1111.4	2	optional (only Profinet)

* The values are transmitted as int16 (1 word) or int32 (2 words).

With 1 decimal place: Divide value by 10 .
With 3 decimal places: Divide value by 1000 .
Example:

PLC Value	Compax3 value	
1000	1.000	(3 decimal places)
10	1.0	(1 decimal place)

The setpoint movement speeds C \& D do have the same function, they differ only in the word width.
The same applies for the setpoint accelerations and decelerations A \& B
You should therefore only use one of these two values (A \& B).
Caution: The meaning of position setpoint value A and the setpoint movement values C \& D change with Gearing and Velocity:

With the motion function Gearing applies:
Position setpoint value $A=$ Gearing numerator
Setpoint movement speeds $C=$ Gearing denominator \& D

With the motion function Velocity applies:
Position setpoint value $A=$ Speed

Layout of the control word (see on page 303).

Layout of the telegram: Compax3 -> Profibus Master / Profinet Controller

ZSW1						
Aw_{n}	Aw_{n+2}	$\mathrm{Aw}_{n+4} \quad \mathrm{Aw}_{n+6} \quad \mathrm{Aw}_{n+8}$ Possible assignment: Aw_{n+10}		$A W_{n+12}$	Aw_{n+14}	AW_{n+16}
		Abbreviation	Designation	Object No.	Assigned words	Assignment
		SW1:	Status word 1	1000.3	1	fixed
		-	Torque actual value (Fixed point format E2_6)	683.1	1	optional
		E_DIGITAL	Digital inputs 10 ... 17	120.3	1	optional
		-	Digital inputs of the M10/M12 option	121.2	1	optional
		NACT_B	Rotation speed actual value B (3 decimal places)*	681.9	2	optional
		-	Following error (3 decimal places)*	680.6	2	optional
		XACT_A	Actual position value A (3 decimal places)*	680.5	2	optional
			Status word 2	1000.4	1	optional
		NACT_A	Actual speed value A (1 decimal place)*	681.7	1	optional
		-	Last error	550.1	1	optional

* The values are transmitted as int16 (1 word) or int32 (2 words).

With 1 decimal place: Divide value by 10.
With 3 decimal places: Divide value by 1000.
Example:

PLC Value	Compax3 value	
1000	1.000	(3 decimal places)
10	1.0	(1 decimal place)

Layout of the Status word. (see on page 304)

5.4.1.5 Operating mode: Positioning with set selection

Layout of the telegram: Profibus-Master / Profinet-Controller -> Compax3

CW1	CW2					
Aw_{n}	Aw_{n+2}	$\mathrm{Aw}_{n+4} \stackrel{\mathrm{Aw}}{n+6} \mathrm{Aw}_{n+8} \quad \mathrm{Aw} \mathrm{w}_{n+10}$Possible assignment:		Aw_{n+12}	Aw_{n+14}	$\mathrm{Aw}_{\mathrm{n}+16}$
		Abbreviation	Designation	Object No.	Assigned words	Assignment
		CW2	Control word 2	1100.4	1	fixed
		Abbreviation	Designation	Object No.	$\begin{array}{\|l} \hline \begin{array}{l} \text { Assigned } \\ \text { words } \end{array} \\ \hline \end{array}$	Assignment
		CW1:	Control word 1	1100.3	1	fixed
		A_DIGITAL	Digital outputs O0 ... O3	140.3	1	optional
		-	Digital outputs of the M10/M12 option	133.3	1	optional
		-	Demand movement speed C (1 decimal place)*	1100.8	1	optional
		-	Commanded motion speed D (3 decimal places)*	1100.7	2	optional
		-	Setpoint acceleration A (no decimal place)	1111.10	1	optional
		-	Setpoint acceleration B (no decimal place)	1111.3	2	optional
			Setpoint deceleration A	1111.16	1	optional (only Profinet)
			Setpoint deceleration B	1111.4	2	optional (only Profinet)

Layout of the control word (see on page 303).

Layout of the telegram: Compax3 -> Profibus Master / Profinet Controller

Possible assignment:

Abbreviation	Designation	Object No.	Assigned words	Assignment
SW1:	Status word 1	1000.3	1	fixed
-	Torque actual value (Fixed point format E2_6)	683.1	1	optional
E_DIGITAL	Digital inputs I0 .. I7	120.3	1	optional
-	Digital inputs of the M10/M12 option	121.2	1	optional
NACT_B	Rotation speed actual value B (3 decimal places)*	681.9	2	optional
-	Following error (3 decimal places)*	680.6	2	optional
XACT_A	Actual position value A (3 decimal places)*	680.5	2	optional
	Status word 2	1000.4	1	optional
NACT_A	Actual speed value A (1 decimal place)	681.7	1	optional
-	Last error	550.1	1	optional

* The values are transmitted as int16 (1 word) or int32 (2 words).

With 1 decimal place: Divide value by 10.
With 3 decimal places: Divide value by 1000.

Example:

PLC Value	Compax3 value	
1000	1.000	(3 decimal places)
10	1.0	(1 decimal place)

Layout of the Status word. (see on page 304)
Defining sets: Please use the Compax3 ServoManager or the acyclic channel (PKW) in order to enter the motion sets.
Layout of the Set table (see on page 310).

5.4.1.6 PKW parameter channel

Parameter access with DPVO

In addition to cyclic data exchange, you can use the PKW mechanism for acyclic access to parameters.
The PKW mechanism is implemented for Profibus master / Profinet controller without DPV1 functionality.
PKW: Parameter identification value
You can select between:

- no PKW - without acyclic parameter access.
\bullet PKW - parameter access via a PKW length of 8 bytes.

PKW structure

Additional information on the structure of the PKW (see on page 312)

5.4.1.7 Error Reaction on Bus Failure

Here you can adjust how Compax3 will respond to a fieldbus error (see on page 335):

Possible settings for the error reaction are:

- No response
- Downramp / stop
- Downramp / stromlos schalten (standard settings)

5.4.2. Status machine

Via control word (see on page 299) Compax3 is placed din different operating states. The status word (see on page 300) can be used to read the current operating status of the Compax3.

5.4.2.1 Status machine PROFIDrive

Explanation:

S..: Status
-S.. (e.g. SA1) is used to designate individual states.

- States with dotted lines as their borders are dynamic transitions that Compax3 automatically leaves again after a specified action.
- In the case of fixed states, the control word (CW) required to switch to the next state is indicated.
- Each status is defined by a specific status word (SW).
B..: Status levels
B.. (e.g. BA1) is used to designate individual status levels.
- Status levels indicate, for example, that everything that is located in status level BA4 will be left behind by the transition TA10 with the control word pattern that is displayed (in this case the transition will be initiated by CW. $2==0$ " - OFF3).

Bit counting method:

| x |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Below you will find the status diagrams for the speed control and positioning operating modes.

5.4.2.2 Status machine PROFIDrive speed control

5.4.2.3 Status machine Position PROFIDrive

5.4.3. Cyclic process data channel

The structure of the PZD is defined in the configuration menu: "Profibus/Profinet telegram (see on page 290)" of the ServoManager.

5.4.3.1 Control word 1 overview

Bit	Description		
	Operating mode:		
	Speed control	Direct positioning	Positioning with set selection
0	ON / OFF 1		
1	Operating condition / OFF 2		
2	Operating condition / OFF 3		
3	Enable operation / disable operation		
4	Operating condition / Disable startup encoder	Operating condition / Discard motion order	
5	Enable startup encoder / Stop startup encoder	Operating condition /Intermediate stop (with Velocity \& Gearing $=>$ Stop with termination)	
6	enable setpoint / Disable setpoint	Activate motion order (START with edge)	
7	Acknowledge / no meaning		
8	Jog 1 ON / jog 1 OFF (Manual+)		
9	Jog 2 ON / jog 2 OFF (Manual-)		
10	Guiding from PLC / no guiding		
11	Reserved (="0")	Reference start / cancel referencing	
12	Reserved (="0")	Mode 2	Reserved (="0")
13	Reserved (="0")	Mode 1	Reserved (="0")
14	Reserved (="0")	Continuous mode	Continuous mode
15	Reserved (="0")	Mode 0	Reserved (="0")

Explanation: The meaning for bit value $=1$ is to the left of the front slash, while the meaning for bit value $=0$ is to the right

5.4.3.2 Status word 1 overview

Bit	Description		
	Operating mode		
	Speed control	Direct positioning	Positioning with set selection
0	Ready to turn on / not ready to turn on		
1	Ready for operation / not ready for operation		
2	Operation enabled / operation disabled		
3	Malfunction / no malfunction		
4	No OFF 2 / OFF 2		
5	No OFF 3 / OFF 3		
6	Switch-on disable / no switch-on disable		
7	Warning / no warning		
8	Target/actual in tolerance range / Target/actual not in tolerance range 1	No tracking error / Following error	
9	Guiding requested / operation on site		
10	Rotation speed reached / Rotation speed below setpoint value	Commanded position reached /without commanded position or Commanded position reached / not reached Synchronism reached / not reached	
11	Reserved (="0")	Reference point set / No reference point set	
12	Reserved (="0")	Setpoint acknowledgement (edge)	
13	Drive stopped / drive moving		
14	Reserved ($=$ "0");		
15	Reserved (="0")	Reg detected	

Explanation: The meaning for bit value $=1$ is to the left of the front slash, while the meaning for bit value $=0$ is to the right.

5.4.3.3 Speed control operating mode

Control word 1

Bit	Value	Description	Notes
0	1	ON	Ready for operation; voltage on;
	0	OFF 1	Bring to a stop (back to the "Ready to turn on " status); Bring down with jerk/delay FSTOP1 - deenergize
1	1	Operating conditions	All "OFF 2" commands are disabled.
	0	OFF 2	Deenergize - Voltage off and in turn-on disable; motor spins to a stop.
2	1	Operating conditions	All "OFF 3" commands are disabled.
	0	OFF 3	Fast stop; if necessary release operating disable Bring down with jerk/deceleration FSTOP3 - deenergize
3	1	Enable operation	release Then startup to setpoint that is present.
	0	Disable operation	Drive stops at STOP ramp and goes into "Ready for operation" status (see CW1 bit 0).
4	1	Operating conditions	
	0	Disable startup encoder	Output HLG is set to 0 . Drive decelerates to rotation speed 0 with stop ramp.
5	1	Enable startup encoder	
	0	Stop startup encoder	Drive decelerates to rotation speed 0 with stop ramp.
6	1	Enable Setpoint value	Selected value is turned on at the input of the HLG.
	0	Disable setpoint	Drive decelerates to rotation speed 0 with stop ramp.
7	1	Acknowledge	A positive edge results in acknowledgement error status until error has been successfully eliminated then into "Switch-on disable".
	0	No meaning	
8	1	Jog 1 ON	Prerequisite: operation is enabled and n -nominal $=0$ Drive moves at speed / acceleration / jerk for Manual+/- in the direction of positive end limits.
	0	Jog 1 OFF	The drive brakes at Speed / Acceleration / Jerk for JOG +/-, if "Jog 1" was ON and comes to a stop in "Operation enabled".
9	1	Jog 2 ON	Prerequisite: operation is enabled and n-nominal $=0$ Drive moves at speed / acceleration / jerk for Manual+/- in the direction of negative end limits.
	0	Jog 2 OFF	The drive brakes at Speed / Acceleration / Jerk for JOG +/-, if "Jog 2" was ON and comes to a stop in "Operation enabled".
10	1	Guide mechanism	Guiding via Profibus/Profinet, process data valid.
	0	No guiding	No guiding via Profibus/Profinet Changes in the control word are not considered (except for Bit 10). Digital inputs (see on page 137) not linked with the control word.
11 ... 15		factory use	

Status word 1 in the rotation speed control operating mode

Bit	Value	Description	Notes
0	1	Ready to turn on	Power supply turned on Compax3 initialized and disabled.
	0	Not ready to turn on	
1	1	Ready for operation	See CW1-bit 0.
	0	Not ready for operation	
2	1	Operation enabled	See CW-bit 3.
	0	Operation disabled	
3	1	Malfunction	Error and drive out of operation as a result, going into switch-on disable after acknowledgement and successful elimination of error(s). Error numbers in malfunction parameter.
	0	Free of malfunctions	
4	1	No OFF 2	
	0	OFF 2	"OFF 2" command is present
5	1	No OFF 3	
	0	OFF 3	"OFF 3" command is present
6	1	Switch-on disable	Switch on again only with "OFF 1" and then "ON".
	0	No switch-on disable	
7	1	Warning	Drive continues in operation; warning in maintenance parameter, no acknowledge.
	0	No warning	There is no warning present or the warning has disappeared again.
8	1	Target/actual monitoring in the tolerance range	
	0	Target/actual monitoring not in the tolerance range	
9	1	Guiding requested	The automation system has been requested to take over guiding.
	0	Operation on site	Guiding via digital Inputs (see on page 137) possible.
10	1	f or n reached	Actual value = comparison value (setpoint), which can be adjusted with the parameter number
	0	Value fell short of f or n	
11, 12	-	Reserved (="0")	
13	1	Drive is stopped	Indicates the standstill for temporary stop and stop
	0	Drive moving	
14, 15	-	Reserved (="0")	

5.4.3.4 Operating mode direct positioning

Control word 1

Bit	Value			Description	Notes
0	1			ON	Ready for operation; voltage on;
	0			OFF 1	Bring to a stop (back to the "Ready to turn on " status); Bring down with jerk/delay FSTOP1 - deenergize
1	1			Operating conditions	All "OFF 2" commands are disabled.
	0			OFF 2	Deenergize - Voltage off and in turn-on disable; motor spins to a stop.
2	1			Operating conditions	All "OFF 3" commands are disabled.
	0			OFF 3	Fast stop; if necessary release operating disable Bring down with jerk/deceleration FSTOP3 - deenergize
3	1			Enable operation	release Then startup to setpoint that is present.
	0			Disable operation	Drive stops at STOP ramp and goes into "Ready for operation" status (see CW1 bit 0).
4	1			Operating condition for positioning	Activation of a motion order takes place with edge to bit 6
	0			Stop	Drive brakes from an active motion order at maximum acceleration to $\mathrm{n}=0$ and remains in place at holding torque. The current motion order is discarded.
5	1			Operating condition for positioning	It must be constantly present for a motion command to be executed.
	0			Temporary stop	Drive brakes from an active motion order on ramp to $\mathrm{n}=0$ and remains in place at holding torque. The motion order is not discarded. The motion order will be continued with a change to CW1 bit $5=1$ With Velocity and Gearing: Stop with termination.
6				Activate motion order	Each edge enables a motion order or a new setpoint (toggle bit). A change of edge cannot take place unless acknowledgement occurred with SW-1 bit 12 of the status word that the previous motion order has been accepted and SW1-bit 11 (reference point) is set.
7	1			Acknowledge	A positive edge results in acknowledgement error status until error has been successfully eliminated then into "Switch-on disable".
	0			No meaning	
8	1			Jog 1 ON	Prerequisite: operation is enabled and n-nominal $=0$ Drive moves at speed / acceleration / jerk for Manual+/- in the direction of positive end limits.
	0			Jog 1 OFF	The drive brakes at Speed / Acceleration / Jerk for JOG +/-, if "Jog 1" was ON and comes to a stop in "Operation enabled".
9	1			Jog 2 ON	Prerequisite: operation is enabled and n-nominal $=0$ Drive moves at speed / acceleration / jerk for Manual+/- in the direction of negative end limits.
	0			Jog 2 OFF	The drive brakes at Speed / Acceleration / Jerk for JOG +/-, if "Jog 2" was ON and comes to a stop in "Operation enabled".
10	1			Guide mechanism	Guiding via Profibus/Profinet, process data valid.
	0			No guiding	No guiding via Profibus/Profinet Changes in the control word are not considered (except for Bit 10). Digital inputs (see on page 137) not linked with the control word.
11	1			Start edge referencing	Changing from 0 to 1 starts the referencing process. SW1-bit 11 in the status word is set to 0 . Prerequisite: Operation is enabled.
	0			Stop referencing	An ongoing referencing process is aborted and the drive stops on the ramp
12, 13, 15	15	13	12	Selection of the motion fu	ction
	0	0	0	MoveAbs (see on page 142)	Absolute positioning: a machine reference, if machine reference run is required.
	0	0	1	MoveRel (see on page 142)	Relative positioning. With relative positioning (transfer TC2): the specified position is added to the current actual position.*
	0	1	0	MoveAdd	Relative positioning. With relative positioning (transfer TC2): the specified position is added to the current target position.*
	0	1	1	Velocity (see on page 149)	Speed specification
	1	0	0	Gearing (see on page 147)	Electronic Gearbox (Gearing)

	1	0	1	RegMove (see on page $143)$	Registration mark-related positioning: Position as from registration mark (preliminary order)
	1	1	0	RegSearch (see on page $143)$	Registration mark-related positioning: Search movement (start of the registration mark-related positioning)
	1	1	1	reserviert	
14	1		Continuous mode	The Setpoint value and actual value are reset for each new motion order (transition TC1 or TC2).	

* Relative; Example

- Positioning mode: absolute
- Target position = 1000
- Positioning mode: relative
-Command: Target position = 200 for actual position 500
- Drive travels to 700

Additive; example

- Positioning mode: absolute
- Target position = 1000
- Positioning mode: additive
- Command: Target position $=200$ for actual position arbitrary
- Drive travels to 1200

Status word 1 operating mode direct positioning

Bit	Value	Description	Notes
0	1	Ready to turn on	Power supply turned on Compax3 initialized and disabled.
	0	Not ready to turn on	
1	1	Ready for operation	See CW1-bit 0.
	0	Not ready for operation	
2	1	Operation enabled	See CW-bit 3.
	0	Operation disabled	
3	1	Malfunction	Error and drive out of operation as a result, going into switch-on disable after acknowledgement and successful elimination of error(s). Error numbers in malfunction parameter.
	0	Free of malfunctions	
4	1	No OFF 2	
	0	OFF 2	"OFF 2" command is present
5	1	No OFF 3	
	0	OFF 3	"OFF 3" command is present
6	1	Switch-on disable	Switch on again only with "OFF 1" and then "ON".
	0	No switch-on disable	
7	1	Warning	Drive continues in operation; warning in maintenance parameter, no acknowledge.
	0	No warning	There is no warning present or the warning has disappeared again.
8	1	No tracking error	
	0	Following error (see on page 134)	
9	1	Guiding requested	The automation system has been requested to take over guiding.
	0	Operation on site	Guiding via digital Inputs (see on page 137) possible.
10	1	Target position reached	Position reached (see on page 133) / speed reached/synchronism reached
	0	Outside of target position	
11	1	Reference point set	Referencing was performed and is valid
	0	No reference point set	No valid reference present
12	Edge	Setpoint acknowledgement	An edge serves to acknowledge that a new motion command or setpoint has been accepted (same level as Bit 6 in the control word 1)
13	1	Drive is stopped	
	0	Drive moving	Motion command is being performed $\mathrm{n}<>0$

14	-	Reserved ($=$ "0");
15	1	Reg detected (see on page 143)
	0	

Function description: Direct positioning

Communication between Master/controller and Compax3 takes place via the Process data channel (PZD)
Procedure:
Selection of the motion function: Bit 15, 13, 12 of the control word 1
Start of the motion function: Bit 6 of the control word 1
Specification of the motion parameters: Objects of the PZD
Layout of the PZD:
Layout of the telegram: Profibus-Master / Profinet-Controller -> Compax3

STW1	XSOLL_A(1)	XNOM_A(2)						
$A w_{n}$	$A w_{n+2}$	$A w_{n+4}$	$A w_{n+6}$	$A w_{n+8}$	$A w_{n+10}$	$A w_{n+12}$	$A w_{n+14}$	$A w_{n+16}$

Possible assignment:

Abbreviation	Designation	Object No.	Assigned words	Assignment
XNOM_A	Position setpoint value A (3 decimal places)*	1100.6	2	fixed
Abbreviation	Designation	Object No.	Assigned words	Assignment
CW1:	Control word 1	1100.3	1	fixed
A_DIGITAL	Digital outputs O0 ... O3	140.3	1	optional
-	Digital outputs of the M10/M12 option	133.3	1	optional
-	Demand movement speed C (1 decimal place)	1100.8	1	optional
-	Commanded motion speed D (3 decimal places)*	1100.7	2	optional
-	Setpoint acceleration A (no decimal place)	1111.10	1	optional
-	Setpoint acceleration B (no decimal place)	1111.3	2	optional
	Setpoint deceleration A	1111.16	1	optional (only Profinet)
	Setpoint deceleration B	1111.4	2	optional (only Profinet)

* The values are transmitted as int16 (1 word) or int32 (2 words).

With 1 decimal place: Divide value by 10.
With 3 decimal places: Divide value by 1000.

Example:

PLC Value	Compax3 value	
1000	1.000	(3 decimal places)
10	1.0	(1 decimal place)

The setpoint movement speeds C \& D do have the same function, they differ only in the word width.
The same applies for the setpoint accelerations and decelerations A \& B
You should therefore only use one of these two values (A \& B).

Caution: The meaning of position setpoint value A and the setpoint movement values C \& D change with Gearing and Velocity:

With the motion function Gearing applies:
Position setpoint value $A=$ Gearing numerator
Setpoint movement speeds $C=$ Gearing denominator \& D

With the motion function Velocity applies:
Position setpoint value $A=$ Speed
For values not transferred the standard values defined in the configuration wizard are valid!

5.4.3.5 Operating mode positioning with set selection

Control word 1

Bit	Value	Description	Notes
0	1	ON	Ready for operation; voltage on;
	0	OFF 1	Bring to a stop (back to the "Ready to turn on " status); Bring down with jerk/delay FSTOP1 - deenergize
1	1	Operating conditions	All "OFF 2" commands are disabled.
	0	OFF 2	Deenergize - Voltage off and in turn-on disable; motor spins to a stop.
2	1	Operating conditions	All "OFF 3" commands are disabled.
	0	OFF 3	Fast stop; if necessary release operating disable Bring down with jerk/deceleration FSTOP3 - deenergize
3	1	Enable operation	release Then startup to setpoint that is present.
	0	Disable operation	Drive stops at STOP ramp and goes into "Ready for operation" status (see CW1 bit 0).
4	1	Operating condition for positioning	Activation of a motion order takes place with edge to bit 6
	0	Stop	Drive brakes from an active motion order at maximum acceleration to $\mathrm{n}=0$ and remains in place at holding torque. The current motion order is discarded.
5	1	Operating condition for positioning	It must be constantly present for a motion command to be executed.
	0	Temporary stop	Drive brakes from an active motion order on ramp to $\mathrm{n}=0$ and remains in place at holding torque. The motion order is not discarded. The motion order will be continued with a change to CW1 bit $5=1$. (not with Velocity \& Gearing).
6		Activate motion order	Each edge enables a motion order or a new setpoint (toggle bit). A change of edge cannot take place unless acknowledgement occurred with SW-1 bit 12 of the status word that the previous motion order has been accepted and SW1-bit 11 (reference point) is set with absolute positioning.
7	1	Acknowledge	A positive edge results in acknowledgement error status until error has been successfully eliminated then into "Switch-on disable".
	0	No meaning	
8	1	Jog 1 ON	Prerequisite: operation is enabled and n-nominal $=0$ Drive moves at speed / acceleration / jerk for Manual+/- in the direction of positive end limits.
	0	Jog 1 OFF	The drive brakes at Speed / Acceleration / Jerk for JOG +/-, if "Jog 1" was ON and comes to a stop in "Operation enabled".
9	1	Jog 2 ON	Prerequisite: operation is enabled and n-nominal $=0$ Drive moves at speed / acceleration / jerk for Manual+/- in the direction of negative end limits.
	0	Jog 2 OFF	The drive brakes at Speed / Acceleration / Jerk for JOG +/-, if "Jog 2" was ON and comes to a stop in "Operation enabled".
10	1	Guide mechanism	Guiding via Profibus/Profinet, process data valid.
	0	No guiding	No guiding via Profibus/Profinet Changes in the control word are not considered (except for Bit 10). Digital inputs (see on page 137) not linked with the control word.
11	1	Start edge referencing	Changing from 0 to 1 starts the referencing process. SW1-bit 11 in the status word is set to 0 . Prerequisite: Operation is enabled.
	0	Stop referencing	An ongoing referencing process is aborted and the drive stops with ramp
12,13		Reserved (="0")	
14	1	Continuous mode	The Setpoint value and actual value are reset for each new motion order (transition TC1 or TC2).
15		factory use	

Control word 2 (Set selection)

In the "Positioning with set selection" operating mode, the address of the motion set is specified via control word 2

Bit	Description
0	Address 0 for set selection
1	Address 1 for set selection
2	Address 2 for set selection
3	Address 3 for set selection
4	Address 4 for set selection
$5 \ldots 15$	factory use

Status word 1 operating mode Positioning with set selection

Bit	Value	Description	Notes
0	1	Ready to turn on	Power supply turned on Compax3 initialized and disabled.
	0	Not ready to turn on	
1	1	Ready for operation	See CW1-bit 0.
	0	Not ready for operation	
2	1	Operation enabled	See CW-bit 3.
	0	Operation disabled	
3	1	Malfunction	Error and drive out of operation as a result, going into switch-on disable after acknowledgement and successful elimination of error(s). Error numbers in malfunction parameter.
	0	Free of malfunctions	
4	1	No OFF 2	
	0	OFF 2	"OFF 2" command is present
5	1	No OFF 3	
	0	OFF 3	"OFF 3" command is present
6	1	Switch-on disable	Switch on again only with "OFF 1" and then "ON".
	0	No switch-on disable	
7	1	Warning	Drive continues in operation; warning in maintenance parameter, no acknowledge.
	0	No warning	There is no warning present or the warning has disappeared again.
8	1	No tracking error	
	0	Following error (see on page 134)	
9	1	Guiding requested	The automation system has been requested to take over guiding.
	0	Operation on site	Guiding via digital Inputs (see on page 137) possible.
10	1	Target position reached	Position reached (see on page 133) / speed reached / synchronism reached
	0	Outside of target position	
11	1	Reference point set	Referencing was performed and is valid
	0	No reference point set	No valid reference present
12	Edge	Setpoint acknowledgement	An edge serves to acknowledge that a new motion command or setpoint has been accepted (same level as Bit 6 in the control word 1)
13	1	Drive is stopped	
	0	Drive moving	Motion command is being performed $\mathrm{n}<>0$
14	-	Reserved (="0");	
15	1	Reg detected (see on page 143)	
	0		

Status word 2

Status word 2 in the "Positioning with set selection" operating mode contains the selected set number as well as the PSBs.

Bit	Description
0	Address 0 of the current set
1	Address 1 of the current set
2	Address 2 of the current set
3	Address 3 of the current set
4	Address 4 of the current set
$5 \ldots 11$	factory use
12	Programmable status bit 0 (PSB0)
13	Programmable status bit 1 (PSB1)
14	Programmable status bit 2 (PSB2)
15	factory use

Function description: Positioning with set selection

Communication between Master/controller and Compax3 takes place via the Process data channel (PZD)
Procedure:
Defining the motion sets with the Compax3 ServoManager or via the acyclic channel.
Selecting the desired motion set via control word 2
Start the motion with control word 1 Bit 6.
Layout of the PZD:

Layout of the telegram: Profibus-Master / Profinet-Controller -> Compax3

Possible assignment:

Abbreviation	Designation	Object No.	Assigned words	Assignment
CW2	Control word 2	1100.4	1	fixed
Abbreviation	Designation	Object No.	Assigned words	Assignment
CW1:	Control word 1	1100.3	1	fixed
A_DIGITAL	Digital outputs O0 .. O3	140.3	1	optional
-	Digital outputs of the M10/M12 option	133.3	1	optional
-	Demand movement speed C (1 decimal place)*	1100.8	1	optional
-	Commanded motion speed D (3 decimal places)*	1100.7	2	optional
-	Setpoint acceleration A (no decimal place)	1111.10	1	optional
-	Setpoint acceleration B (no decimal place)	1111.3	2	optional
	Setpoint deceleration A	1111.16	1	optional (only Profinet)
	Setpoint deceleration B	1111.4	2	optional (only Profinet)

Layout of the control word (see on page 303).

Layout of the telegram: Compax3 -> Profibus Master / Profinet Controller

ZSW1						
Aw_{n}	Aw_{n+2}	$\mathrm{Aw}_{n+4} \stackrel{\mathrm{Aw}}{n+6} \mathrm{Aw}_{n+8} \quad \mathrm{Aw}_{n+10}$Possible assignment:		AW_{n+12}	AW_{n+14}	AW_{n+16}
		Abbreviation	Designation	Object No.	Assigned words	Assignment
		SW1:	Status word 1	1000.3	1	fixed
		-	Torque actual value (Fixed point format E2_6)	683.1	1	optional
		E_DIGITAL	Digital inputs 10... 17	120.3	1	optional
		-	Digital inputs of the M10/M12 option	121.2	1	optional
		NACT_B	Rotation speed actual value B (3 decimal places)*	681.9	2	optional
		-	Following error (3 decimal places)*	680.6	2	optional
		XACT_A	Actual position value A (3 decimal places)*	680.5	2	optional
			Status word 2	1000.4	1	optional
		NACT_A	Actual speed value A (1 decimal place)*	681.7	1	optional
		-	Last error	550.1	1	optional

* The values are transmitted as int16 (1 word) or int32 (2 words).

With 1 decimal place: Divide value by 10.
With 3 decimal places: Divide value by 1000.

Example:

PLC Value	Compax3 value	
1000	1.000	(3 decimal places)
10	1.0	(1 decimal place)

Layout of the Status word. (see on page 304)
Defining sets: Please use the Compax3 ServoManager or the acyclic channel (PKW) in order to enter the motion sets.
Layout of the Set table (see on page 310).

Layout of the set table

In this chapter you can read about:
General layout of the table.. 311
Assignment of the different motion functions... 311
Definition of the states of the programmable status bits (PSBs): 311
The motion sets are memorized in an object table. The table has 9 columns and 32 rows.
A motion set is stored in a table row.
The assignment of the columns depends on the motion function.

General layout of the table

	Column 1 Type: REAL objects 01901	Column 2 Type: REAL objects 01902	Column 3 Type: INT objects 01903	Column 4 Type: INT objects 01904	Column 5 Type: INT objects 01905	Column 6 Type: DINT objects 01906	Column 7 Type: DINT objects 01907	Column 8 Type: DINT objects 01908	Column 9 Type: DINT objects 01909
Set 1	$\begin{array}{\|l\|} \hline \text { Row 1 } \\ \text { "Array_Col1 } \\ \text { Row1" } \\ \hline(1901.1) \\ \hline \end{array}$	Row 1 "Array_Col 2_Row1" (1902.1)	Row 1 "Array_Col 3_Row1" (1903.1)	Row 1 "Array_Col 4_Row1" (1904.1)	Row 1 "Array_Col5 (1905.1)	Row 1 "Array_Col6 Row1" (1906.1)	Row 1 "Array_Col 7_Row1" (1907.1)	Row 1 "Array_Col8 (1908.1)	Row 1 "Array_Col9_ Row1" (1909.1)
set no. 2
Set 3	\ldots	...	\ldots	\ldots	\ldots
...
Set 31	Row 31 "Array_Col1 (1901.31)	Row 31 "Array_Col 2_Row31" (1902.31)	Row 31 "Array_Col 3_Row31" (1903.31)	Row 31 "Array_Col 4_Row31" (1904.31)	Row 31 "Array_Col5 _Row31" (1905.31)	Row 31 "Array_Col6 (1906.31)	Row 31 "Array_Col 7_Row31" (1907.31)	Row 31 "Array_Col8 (1908.31)	Row 31 "Array_Col9_ Row31" (1909.31)

You will find the respective object number in brackets.

Assignment of the different motion functions

The columns 3 and 9 are reserved.

Motion-functi ons	Column 1	Column 2	Column 4	Column 5	Column 6	Column 7	Column 8
	Type: REAL Objects 01901	Type: REAL Objects 01902	Type: INT Objects 01904	Type: INT Objects 01905	Type: DINT Objects 01906	Type: DINT Objects 01907	$\begin{aligned} & \text { Type: DINT } \\ & \text { Objects } \\ & \text { O1908 } \end{aligned}$
	Positions	Speed	ProgrammierS tatusbits (PSBs)	Mode	Acceleration s	Deceleration / denominator	Jerk
MoveAbs (see on page 142)	Target position	Speed	PSBs	1 (for MoveAbs)	Accel	Decel	Jerk
MoveRel (see on page 142)	Distance	Speed	PSBs	2 (for MoveRel)	Accel	Decel	Jerk
Gearing (see on page 147)	-	Numerator	PSBs	3 (for Gearing)	Accel	Denominator	-
RegSearch (see on page 143)	Distance	Speed	PSBs	4 (for RegSearch)	Accel	Decel	Jerk
RegMove (see on page 143)	Offset	Speed	PSBs	5 (for RegMove)	-	-	-
Velocity (see on page 149)	-	Speed	PSBs	6 (for Velocity)	Accel	-	-
STOP	-	-	PSBs	7 (for Stop)	-	Decel	Jerk

Definition of the states of the programmable status bits (PSBs):

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
factory use	Enable2 PSB2	Enable1 PSB1	Enable0 PSB0	factory use	PSB2	PSB1	PSB0
	="1": Set PSB ""0": leave PSB unchanged						

The Bits 0 ... 2 monitor the states of the status bits at the end of a motion set, if the bits were enabled via the respective Enable.
If Enable is set to " 0 ", the respective PSB remains unchanged at the end of the motion set.
PSB0: Status word 2 Bit 12
PSB1: Status word 2 Bit 13
PSB2: Status word 2 Bit 14

5.4.4. Acyclic parameter channel

Compax3 supports parameter access with DPV1.
The available parameters or objects can be found here.
In this chapter you can read about:
Parameter access with DPV0: Required data channel.

5.4.4.1 Parameter access with DPV0: Required data channel

You can use the PKW mechanism for acyclic access to parameters in cyclic data exchange as well. This is made available to make it possible for the master/controller to have access to the important device parameters without DPV1 functionality.
The master/controller formulates an order in the PKW mechanism. Compax3 processes the order and formulates the response.
PKW structure:

Byte 1	Octet 2	Octet 3	Octet 4	Octet 5	Octet 6	Octet 7	Octet 8
PKE	IND	PWE					

PKW: Parameter identification value
PKE: Parameter identification (1st and 2nd byte) (see below)
IND: subindex* (3rd byte), 4th byte is reserved
PWE: Parameter value (5th through 8th byte or 5th through 12th byte with expanded PKW)
PKE structure:

Byte 1								Octet 2							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AK				SPM	PNU										
AK: SPM: PNU:	Order or response identification (value range $0 \ldots$ 15) reserved Parameter number														

*Reference to the subindex

The information for PNU subindex (parameter number) also applies to PROFIdrive profile Version 3, i.e., that the subindex is counted starting at 0 , while for PROFIdrive profile Version 2 the subindex is counted starting at 1 :

The result of this is as follows:

Profibus master based on PROFIdrive profile Version 3

The subindex of the Profibus No. (PNU) specified in the object list is directly valid. Example: Example: PNU object forward speed control $=400.1$ (as specified).

Profibus master based on PROFIdrive profile Version 2

The subindex of the Profibus No. (PNU) specified in the object list must be incremented by 1.
Example: PNU object forward speed control $=400.2$

Order and response processing

Order/response identifications are defined so that it is apparent from the identification which fields of the PKW interface (IND, PWE) also need to be evaluated. To this may be added the distinction between parameter value and parameter description.

Order identificatio \mathbf{n}	Order Master/Controller \rightarrow Compax3	response identification Compax3 \rightarrow Master/Controller
0	No order	0
1	Request parameter value	1.2
2	Change parameter value (word)	1
3	Change parameter value (double word)	2
6	Request parameter value (array)	4.5
7	Change parameter value (array of word)	4
8	Change parameter value (array of double word)	5
9	Request number of array elements	6
14	Change object	14
15	Request object	15

Response identifications 7 and 8 are used for negative acknowledgements for problems.

Sequence

- The master/controller transfers an order to a Compax3.
- The master/controller repeats this order at least until a response is received from Compax3.
This procedure ensures the transfer of orders / responses on the user level.
- Only one order is ever being processed at a time.
- Compax3 continues to make the response available until the master/controller formulates a new order.
- For responses containing parameter values, Compax3 always responds upon repetition with the current value (cyclic processing). This applies to all responses to the orders "Request parameter value", "Request parameter value (Array)" and "Request object".
- The PWE transfer of word sizes takes place with byte 7 and 8 , while the transfer of double word sizes takes place with byte 5 through 8.

Explanation of response identification

Response identificatio \mathbf{n}	Compax3 \rightarrow Master/Controller response
0	No response
1	Transfer value (word)
2	Transfer parameter value (double word)
4	Transfer parameter value (array of word)
5	Transfer parameter value (array of double word)
7	Order cannot be executed (with error No. (see on page 335))
8	No user level for PKW interface
9	factory use
10	factory use
14	Object value transferred
15	Object value transferred

Example: Changing the stiffness

Task:
Parameter / object change via PKW (DPVO)
The object "stiffness" will be set to 200%
Object stiffness: PNU 402.2; valid after VP
Format UNSIGNED 16 == 1 word == order identification = 2 == "Change parameter value (word)"
The master sends to Compax3:
PLC - Compax3

Octet 1								Octet 2								Octet 3	Octet 4	Octet 5	Octet 6	Octet 7	Octet 8
PKE																IND		PWE			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Subindex	-	MSB			LSB
AK					PNU																
2				0	402											3	0				200
0	0	1	0	0	0	0	1	1	0	0	1	0	0	1	0						
0×21								0×92								0x3	0x0	0x0	0x0	0x0	0xC8

Compax3 responds with the same content, except with response identification $=1$:
Compax3 - PLC

Octet 1								Octet 2								Octet 3	Octet 4	Octet 5	Octet 6	Octet 7	Octet 8
PKE																IND		PWE			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Subindex	-	MSB			LSB
AK					PNU																
1				0	402											3					200
0	0	0	1	0	0	0	1	1	0	0	1	0	0	1	0						
0×11								0x92								0x3	0x0	0x0	0x0	0x0	0xC8

If no additional object needs to be changed, the new value can be set to valid with VP:
Object: Set objects to valid PNU 338.10 (because of DPV0 the Subindex must be incremented by one (see on page 312))

PLC - Compax3

Compax3 responds with the same content, except with response identification $=1$:

Compax3 - PLC

Octet 1								Octet 2								Octet 3	Octet 4	Octet 5	Octet 6	Octet 7	Octet 8
PKE																IND		PWE			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Subindex	-	MSB			LSB
AK					PNU																
1				0	338											11					1
0	0	0	1	0	0	0	1	0	1	0	1	0	0	1	0						
0×11								0x52								0xB	0x0	0x0	0x0	0x0	0x1

Reading back the object set objects to valid makes it possible to check whether the command was performed. Byte 8 will the contain the value 0 .

The change can be stored and will not be lost even if with a power failure by using the object "Save objects permanently".
Object: Save objects permanently PNU 339

PLC - Compax3

Compax3 responds with the same content, except with response identification $=1$:

Compax3 - PLC

Octet 1								Octet 2								Octet 3	Octet 4	Octet 5	Octet 6	Octet 7	Octet 8
PKE																IND		PWE			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Subindex	-	MSB			LSB
AK					PNU																
1				0	339											0					1
0	0	0	1	0	0	0	1	0	1	0	1	0	0	1	1						
0×11								0x53								0x0	0x0	0x0	0x0	0x0	0x1

Object Upload/download via Profibus/Profinet

All settings of Compax3 can be read using the Profibus/Profinet and written back to Compax3. This makes it easy to replace a device, for example.

Condition:

Compax3 must be configured (once running through the configuration wizard followed by a download is enough; the configuration settings are, however, not relevant)
To implement this, the PKW mechanism has been changed.

Structure of modified PKW:

Byte 1	Octet 2	Octet 3	Octet 4	Octet 5	Octet 6	Octet 7	Octet 8
PKE	IND	PWE					

PKW: Parameter identification value
PKE: Parameter identification (1st and 2nd byte) (see below)
IND: object index (3rd byte high 4th byte low)
PWE: Parameter value (5th to 8th byte)
Structure of modified PKE:

Byte 1								Octet 2							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AK=14 or 15				SPM	DF	DP		SI							
AK SP DF DP SI:		Data format (DF=1 constant) data buffer access object subindex													

Data buffer access:
For each object, 16 bytes must be read or written Since the size of the PWE channel is 4 bytes, each object must be read or written 4 times.

Sequence for reading / writing and object:

DPZ=0:
Order executed
DPZ=1
DPZ=2
DPZ=3 Object byte $9 \ldots 12$ can be read/is being written
The data will either be read fro the PWE or written into the PWE.

Access algorithm for reading objects

- Object 20.2 written with value 0 (object 20.2 is a counter that specifies the next object to be read; the starting value is 0).
- Read object index and subindex in object 20.5.

Format I32 of Object 20.5:

Not assigned	Index (high byte)	Index (low byte)	Subindex

- Read the object with the index and subindex read in object 20.5 and in save it in a table with the following structure: Index (2Byte), Subindex (1Byte), Contents (16Byte).
- Read the next object-Index and subindex in object 20.5.
-

This must be performed until index $=0 x F F F F$ and until subindex $=0 x F F$.

Writing objects

Write the entire table to Compax3. Each index and subindex is written with the value stored in the table.
It should be noted in this regard that each time an object is written, the internal buffer must first be written with $D P Z=1,2,3$ and then the entire order is written with DPZO.

5.4.5. TCP/IP communication with Profinet

Supported functions via TCP/IP Profinet - devices are:

- Devices - Identification
- Upload configuration
- Upload IEC program
- Download configuration
- Download of an IEC61131-3 project
- Download Cam Curve Data
- Functions of the operator control module
- Use the IEC debuggers

Not possible are:

- Firmware updates
- Multi-axis functions with Compax3M

Configuring TCP/IP Communication

Open in the C3 ServoManager under options: Communication settings Profinet TCP the configuration window:

Settings:

Compax3 IP - Address
Port Address: 44822 or 44821
Device address $=0$
Compax3 Gateway: don't Select.

5.5 Compax3-Objects

setting objects to Please note that certain objects are not valid (read by Compax3) immediately after valid a change. This is described in the heading "Valid after". These objects are converted to internal variables by Compax3 with the command "Set objects to valid".

saving objects permanently

It should also be noted that modified objects are not permanently stored, i.e. the changes are lost after the power (24 VDC) is turned off.
The object "save objects permanently" can be used to save objects in a flash memory so that they are retained even if the power fails.
In this chapter you can read about:
Object overview sorted by PNU (I20I32T11)
.319
Object overview sorted by object name (I20132T11) .. 325
Data formats of the bus objects ... 331

5.5.1. Object overview sorted by PNU (I20132T11)

No.	Object name	Object	PNU	Bus format	valid with
2100.10	Filter actual velocity 2	ControllerTuning_FilterSpeed2		U16	VP
120.2	Status of digital inputs	Digitallnput_Value		V2	-
2100.21	Filter - Actual acceleration	ControllerTuning_FilterAccel_us		U16	VP
2100.11	Filter actual acceleration 2	ControllerTuning_FilterAccel2		U16	VP
2100.20	Control signal filter of velocity control	ControllerTuning_FilterSpeed_us		U16	VP
2230.20	Ratio direct to quadrature inductance	D_CurrentController_Ld_Lq_Ratio		U16	VP
2230.24	Activation of the voltage decoupling	D_CurrentController_VoltageDecouplin gEnable		116	VP
990.1	Setpoint delay for bus master	Delay_MasterDelay		116	Immediately
84.4	Current RS485 address of the C3M	DeviceSupervision_DeviceAdr		U16	-
84.3	Number of devices in the C3M combination	DeviceSupervision_DeviceCounter		U16	-
84.5	Hours of operation of the PSUP in s	DeviceSupervision_OperatingTime		U32	-
84.2	Device number in the C3M combination	DeviceSupervision_ThisDevice		U16	-
85.1	PSUP operating state	Diagnostics_DeviceState		V2	Immediately
87.1	Error 1	ErrorHistoryNumber_1		U16	-
86.1	Pointer to current error	ErrorHistoryPointer_LastEntry		U16	-
88.1	Error point in time 1	ErrorHistoryTime_1		U32	-
2020.1	Position from external signal source	ExternalSignal_Position		C4_3	-
2010.20	EMC feed forward	FeedForward_EMF		U16	VP
2011.5	Filter time constant ext. Acceleration	FeedForwardExternal_FilterAccel_us		U16	VP
2011.4	Filter time constant ext. speed	FeedForwardExternal_FilterSpeed_us		U16	VP
410.6	Position difference load-motor (error threshold)	LimitPosition_LoadControlMaxPosDiff		C4_3	VP
2240.7	Magnetization current controller bandwidth (ASM)	Magnetisierungsstromregler_Bandwidth		116	VP
2240.4	Magnetization current controller attenuation(ASM)	Magnetisierungsstromregler_Damping		116	VP
2240.11	Reference speed quantifier (ASM)	Magnetisierungsstromregler_Field weakening speed		116	VP
2240.2	Magnetization current quantifier (ASM)	Magnetisierungsstromregler_Imrn_Dem andValueTuning		116	VP
2240.10	Motor Time Constant quantifier	Magnetisierungsstromregler_RotorTime Constant		116	VP
2240.9	Slip frequency quantifier (ASM)	Magnetisierungsstromregler_SlipFreque ncy		116	VP
2200.3	Optimization parameters for the position controller P component (KV factor)	PositionController_ProportionalPart		U16	VP
2220.22	Parameter motor force constant	Q_CurrentController_BackEMF		116	VP
2220.6	Current Loop I term	Q_CurrentController_CurrentControlInte gralPart		116	VP
2220.5	Current Loop - "P" Term	Q_CurrentController_CurrentControIPro portionalPart		116	VP
2220.20	Parameter motor inductance	Q_CurrentController_Inductance		116	VP
2220.21	Parameter motor resistance	Q_CurrentController_Resistance		116	VP
2220.27	Structure switch of current control	Q_CurrentController_StructureSelection		116	VP
280.5	Resolver excitation level	Resolver_ExcitationLevel		U16	Immediately
280.3	Resolver signal scaling	Resolver_LevelAdaption		116	Immediately
2210.17	Replacement time constant for the velocity control	SpeedController_ActualBandwidth		I32	-
2210.5	Weighting "I" term	SpeedController_I_Part_Gain		U16	VP
2210.4	P term quantifier	SpeedController_P_Part_Gain		U16	VP
2120.7	Switch to enable disturbance compensation	SpeedObserver_DisturbanceAdditionEn able		116	VP
2120.5	Time constant disturbance filter	SpeedObserver_DisturbanceFilter		U32	VP
2120.1	Rapidity of the speed monitor	SpeedObserver_TimeConstant		U32	VP
295.10	SSI feedback position (Increments)	SSI_Feedback_Incr_Position		132	-
682.5	Status of actual acceleration unfiltered	StatusAccel_Actual		132	-
682.6	Status of filtered actual acceleration	StatusAccel_ActualFilter		132	-
682.7	Status acceleration feed forward	StatusAccel_FeedForwardAccel		C4_3	-

No.	Object name	Object	PNU	Bus format	valid with
690.5	Current increase steps automatic commutation	StatusAutocommutation_Itterations		U16	-
688.2	Status of actual current RMS (torque producing)	StatusCurrent_Actual		E2_6	-
688.8	Status control deviation current control RMS	StatusCurrent_ControlDeviationlq		C4_3	-
688.31	Signal decoupling of direct current controller	StatusCurrent_DecouplingVoltageUd		C4_3	-
688.32	Signal EMC feed forward	StatusCurrent_FeedForwardbackEMF		C4_3	-
688.14	Status of current \& jerk feedforward	StatusCurrent_FeedForwordCurrentJer k		C4_3	-
688.34	Negative current limit effective at present	StatusCurrent_NegativeLimit		132	-
688.9	Status of current phase U	StatusCurrent_PhaseU		C4_3	-
688.10	Status of current phase V	StatusCurrent_PhaseV		C4_3	-
688.33	Positive current limit effective at present	StatusCurrent_PositiveLimit		I32	-
688.1	Status of setpoint current RMS (torque forming)	StatusCurrent_Reference		E2_6	-
688.18	Demand current rms	StatusCurrent_ReferenceDINT		132	-
688.13	Status of demand jerk setpoint generator	StatusCurrent_ReferenceJerk		I32	-
688.11	Status of current control control signal	StatusCurrent_ReferenceVoltageUq		C4_3	-
688.22	Provided voltage pointer	StatusCurrent_ReferenceVoltageVector		C4_3	-
688.30	Provided voltage of direct current controller	StatusCurrent_VoltageUd		C4_3	-
688.29	Provided voltage of quadrature current controller	StatusCurrent_VoltageUq		C4_3	-
683.7	Status of short-term braking resistor utilization	StatusDevice_BallastResistorDynamicL oad		C4_3	-
683.6	Status of long-term braking resistor utilization	StatusDevice_BallastResistorLoad		C4_3	-
683.12	Braking resistor switch-off voltage	StatusDevice_BallastResistorOFFThres hold		C4_3	-
683.11	Braking resistor switch-on voltage	StatusDevice_BallastResistorONThresh old		C4_3	-
683.5	Status of observed disturbance	StatusDevice_ObservedDisturbance		C4_3	-
692.4	Status of analog input cosine	StatusFeedback_EncoderCosine		132	-
692.24	Status of analog input cosine (Volt)	StatusFeedback_EncoderCosineVolts		C4_3	-
692.3	Status of analog input sine	StatusFeedback_EncoderSine		132	-
692.23	Status of analog input sine (Volt)	StatusFeedback_EncoderSineVolts		C4_3	-
692.2	Status of cosine in signal processing	StatusFeedback_FeedbackCosineDSP		132	-
692.22	Status of cosine in signal processing	StatusFeedback_FeedbackCosineDSP volts		C4_3	-
692.1	Status of sine in signal processing	StatusFeedback_FeedbackSineDSP		I32	-
692.21	Status of sine in signal processing	StatusFeedback_FeedbackSineDSPvolt s		C4_3	-
692.5	Status of feedback level	StatusFeedback_FeedbackVoltage[Vpp]		C4_3	-
692.10	Status feedback index track	StatusFeedback_RefChannel		116	-
692.9	Status resolver level	StatusFeedback_ResolverLevel		C4_3	-
699.4	Status of demand jerk setpoint generator	StatusJerk_DemandValue		132	-
680.12	Status demand position without absolute reference	StatusPosition_DemandController		C4_3	-
680.14	Feedback absolute position in feedback increments	StatusPosition_FeedbackAbsolute		I32	-
680.23	Actual position of the load	StatusPosition_LoadControlActual		C4_3	-
680.20	Position difference load-motor (unfiltered)	StatusPosition_LoadControIDeviation		C4_3	-
680.22	Position difference load-motor (filtered)	StatusPosition_LoadControlDeviationFil tered		C4_3	-
680.21	Maximum position difference load-motor	```StatusPosition_LoadControlDeviationM ax```		C4_3	-
681.5	Status actual speed unfiltered	StatusSpeed_Actual		C4_3	-
681.12	Filtered actual speed in per cent	StatusSpeed_ActualScaled		C4_3	-
681.13	Setpoint speed of the setpoint generator	StatusSpeed_DemandScaled		C4_3	-
681.10	Status demand speed controller input	StatusSpeed_DemandSpeedController		C4_3	-
681.11	Status speed feed forward	StatusSpeed_FeedForwardSpeed		C4_3	-
681.20	Speed of the load feedback (unfiltered)	StatusSpeed_LoadControl		C4_3	-
681.21	Speed of the load feedback (filtered)	StatusSpeed_LoadControlFiltered		C4_3	-

No.	Object name	Object	PNU	Bus format	valid with
681.25	Negative speed limit currently effective	StatusSpeed_NegativeLimit		C4_3	-
681.24	Positive speed limit currently effective	StatusSpeed_PositiveLimit		C4_3	-
170.3	Filter of analog input 0	AnalogInput0_FilterCoefficient		116	VP
171.3	Filter of analog input 1	AnalogInput1_FilterCoefficient		116	VP
2190.2	Start current of automatic commutation	AutoCommutationControl_InitialCurrent		U16	VP
2190.4	Motion reduction Automatic commutation	AutoCommutationControl_MotionReduc tion		U16	VP
2190.8	Reduction of the peak current	AutoCommutationControl_PeakCurrent		U16	VP
2190.3	Motion limit for automatic commutation	AutoCommutationControl_PositionThre shold		U16	VP
2190.1	Ramp slope current slope AK	AutoCommutationControl_Ramptime		U16	VP
2190.10	Reset automatic commutation	AutoCommutationControl_Reset		U16	Immediately
2190.7	Optimization of the standstill threshold	AutoCommutationControl_StandstillThr eshold		U16	VP
1100.7	Device demand value D	DeviceControl_DemandValue2		Y4	Immediately
1100.14	Device demand value	DeviceControl_DemandValue2_Y2		Y2	1 mmediately
1100.8	Device demand value C	DeviceControl_DemandValue3		Y2	Immediately
1100.13	Nominal value	DeviceControl_DemandValue8		Y4	Immediately
85.8	Chopper Switch-off threshold in V	Diagnostics_ChopperOff_Voltage		116	-
85.7	Chopper Switch-on threshold in V	Diagnostics_ChopperOn_Voltage		116	-
85.3	PSUP intermediate current	Diagnostics_DCbus_Current		116	-
85.2	PSUP DC intermediate voltage	Diagnostics_DCbus_Voltage		116	-
85.9	Reduced DC bus voltage in V	Diagnostics_DCbus_VoltageMax		116	-
85.5	PSUP usage in \%	Diagnostics_RectifierLoad		116	-
85.4	PSUP heat dissipator temperature	Diagnostics_TemperatureHeatSink		116	-
620.6	Zero pulse offset encoder emulation	EncoderEmulation_Offset		C4_3	VP
620.7	Encoder simulation teaching zero pulse	EncoderEmulation_SetEmulationZero		116	Immediately
620.10	Demand position of encoder simulation (without offset)	EncoderEmulation_Setpoint_without_off set		C4_3	-
2020.7	Acceleration of the external signal source	ExternalSignal_Accel_Munits		132	-
2020.6	Speed value of the external signal source	ExternalSignal_Speed_Munits		C4_3	-
3920.7	Output of the Heda Tracking Filter	HEDA_SignalProcessing_OutputGreat		C4_3	-
1130.13	Distance MN (zero) initiator - motor zero	HOMING_edge_position		C4_3	Immediately
2201.2	Load control command mode	LoadControl_Command		116	1 mmediately
2201.1	Activate load control	LoadControl_Enable		116	1 mmediately
2201.11	Time constant of position difference filter	LoadControl_FilterLaggingPart		U32	VP
2201.3	Load control status bits	LoadControl_Status		116	-
2201.12	Time constant of the load-speed filter	LoadControl_VelocityFilter		116	VP
2201.13	Load control intervention speed limitation	LoadControl_VelocityLimit		116	VP
2150.2	Bandwidth of notch filter 1	NotchFilter_BandwidthFilter1		116	VP
2150.5	Bandwidth of notch filter 2	NotchFilter_BandwidthFilter2		116	VP
2150.3	Depth of notch filter 1	NotchFilter_DepthFilter1		132	VP
2150.6	Depth of notch filter 2	NotchFilter_DepthFilter2		132	VP
2150.1	Center frequency of notch filter 1	NotchFilter_FrequencyFilter1		116	VP
2150.4	Center frequency of notch filter 2	NotchFilter_FrequencyFilter2		116	VP
1211.13	Manipulation of the motion direction in reset mode	PG2POSITION_direction		I32	Immediately
1252.20	Status RegMove	PG2RegMove_ParametersModified		116	Immediately
1111.13	Manipulation of the motion direction in reset mode	POSITION_direction		I32	Immediately
2200.20	Deadband of position controller	PositionController_DeadBand		C4_3	VP
2200.21	Friction compensation	PositionController_FrictionCompensatio n		I32	VP
2200.25	I term of position controller	PositionController_IntegralPart		U16	VP
2200.11	Following error filter of the position controller	PositionController_TrackingErrorFilter		U16	VP
2200.24	Time constant following error filter of position controller	PositionController_TrackingErrorFilter_ us		U16	VP
1152.20	Status RegMove	RegMove_ParametersModified		116	Immediately
295.12	Rotation position	SSI_Feedback_PositionGreat		I32	-
688.17	Reciprocal of the field weakening factor FF	StatusCurrent_FieldWeakeningFactor		C4_3	-
684.4	Status of motor temperature resistance value	StatusTemperature_TmotResistance		U16	-

No.	Object name	Object	PNU	Bus format	valid with
670.4	Status of actual force	StatusTorqueForce_ActualForce		I32	-
110.1	Value of the function switch on C3M	Switch_DeviceFunction		U16	-
2109.1	Time constant tracking filter HEDA-process position	TrackingfilterHEDA_TRFSpeed		I16	VP
2107.1	Time constant tracking filter physical source	TrackingfilterPhysicalSource_TRFSpee d		U16	VP
2110.4	Filter effect of acceleration filter setpoint encoder	TrackingfilterSG1_AccelFilter		U16	VP
2110.7	Filter time constant acceleration setpoint generator	TrackingfilterSG1_AccelFilter_us		U16	VP
2110.3	Filter effect of speed filter setpoint encoder	TrackingfilterSG1_FilterSpeed		U16	VP
2110.6	Filter time constant velocity setpoint generator	TrackingfilterSG1_FilterSpeed_us		U16	VP
2110.1	Time constant tracking filter setpoint encoder	TrackingfilterSG1_TRFSpeed		116	VP
634.6	Offset value for the D/A monitor 0	AnalogOutput0_Offset_Hardware		116	VP
635.6	Offset value for the D/A Monitor 1	AnalogOutput1_Offset_Hardware		116	VP
170.2	Gain analog input 0	AnalogInput0_Gain		C4_3	VP
170.4	Analog input Offset 0	AnalogInput0_Offset		116	Immediately
171.2	Gain analog input 1	AnalogInput1_Gain		C4_3	VP
171.4	Analog input offset 1	AnalogInput1_Offset		116	Immediately
634.7	Additional gain factor for the D/A monitor 0	AnalogOutput0_Gain_Hardware		C4_3	VP
635.7	Additional gain factor for the D/A monitor 1	AnalogOutput1_Gain_Hardware		C4_3	VP
1111.8	Continuous mode	POSITION_resetpositon_mode	0	U16	Immediately
1100.3	STW control word	DeviceControl_Controlword_1	1	V2	Immediately
1000.3	status word ZSW	DeviceState_Statusword_1	2	V2	Immediately
1100.4	Control word 2	DeviceControl_Controlword_2	3	V2	Immediately
1000.4	Status word 2	DeviceState_Statusword_2	4	V2	Immediately
681.7	Status of the actual filtered speed speed in the Y2 format	StatusSpeed_ActualFilteredY2	6	Y2	-
1127.3	Setpoint speed in speed control operating mode	SPEED_speed	7	C4_3	Immediately
681.9	Status actual speed filtered	StatusSpeed_ActualFiltered	8	C4_3	-
120.3	Status of digital inputs	Digitallnput_DebouncedValue	21	V2	-
140.3	Command value of the digital outputs	DigitalOutputWord_DemandState	22	V2	Immediately
685.3	Status of analog input 0	StatusVoltage_AnalogInput0	23	Y2	-
634.4	Setpoint for analog output 0	AnalogOutput0_DemandValue	24	I16	Immediately
1111.1	Target position	POSITION_position	27 (Profibus only)	C4_3	Immediately
1100.6	Device demand value A	DeviceControl_DemandValue1	27 (Profinet only)	Y4	Immediately
680.5	Status actual position	StatusPosition_Actual	28	C4_3	-
680.6	Status of tracking error	StatusPosition_FollowingError	100	C4_3	-
681.6	Status control deviation of speed	StatusSpeed_Error	101	C4_3	-
685.4	Status of analog input 1	StatusVoltage_AnalogInput1	102	Y2	-
635.4	Setpoint for analog output 1	AnalogOutput1_DemandValue	103	116	Immediately
1111.2	Speed for positioning	POSITION_speed	111	C4_3	Immediately
683.1	Status of actual current value	StatusDevice_ActualCurrent	112	E2_6	-
1111.10	Acceleration for positioning in U16 Format	POSITION_accel_U16	113	U16	Immediately
1111.3	Acceleration for positioning	POSITION_accel	114	U32	Immediately
550.1	current error (n)	ErrorHistory_LastError	115/947.0	U16	-
681.8	Status of the actual filtered peed in the Y4 format	StatusSpeed_ActualFilteredY4	117	Y4	-
1111.11		POSITION_position_Y4	118	Y4	Immediately
680.8	Status of actual position in bus format Y4	StatusPosition_ActualY4	119	I32	-
1100.5	Operating mode (Nominal value)	DeviceControl_OperationMode	127/930	116	Immediately
1000.5	operating mode display	DeviceState_ActualOperationMode	128	I16	Immediately
1901.1	variable Column 1 Row 1	Col01_Row01	130/341.1	Y4	Immediately
1902.1	variable Column 2 Row 1	Col02_Row01	135/342.1	Y2	Immediately
1903.1	variable Column 3 Row 1	Col03_Row01	140/343.1	116	Immediately
1904.1	variable Column 4 Row 1	Col04_Row01	145/344.1	116	Immediately
1905.1	variable Column 5 Row 1	Col05_Row01	150/345.1	116	Immediately
1906.1	variable Column 6 Row 1	Col06_Row01	155/346.1	I32	Immediately

No.	Object name	Object	PNU	Bus format	valid with
1907.1	variable Column 7 Row 1	Col07_Row01	160/347.1	132	Immediately
1908.1	variable Column 8 Row 1	Col08_Row01	165/348.1	132	Immediately
1909.1	variable Column 9 Row 1	Col09_Row01	170/349.1	132	Immediately
121.2	input word of I/O option	DigitallnputAddition_Value	175	V2	-
133.3	output word for I/O option	DigitalOutputAddition_Value	176	V2	Immediately
1111.16	Deceleration for Positioning in U16 Format	POSITION_decel_U16	177	U16	Immediately
1111.4	Deceleration for positioning	POSITION_decel	178/312	U32	Immediately
1900.1	pointer to table row	Pointer_Row	180	U16	Immediately
1910.1	indirect table access Column 1	Indirect_Col01	181	Y4	Immediately
670.2	Status of actual torque	StatusTorqueForce_ActualTorque	209	132	-
1100.17	Demand value force	DeviceControl_DemandValue11	223	132	Immediately
1100.18	Demand value of force gradient	DeviceControl_DemandValue12	224	132	Immediately
681.26	Status of actual speed filtered in $1 / \mathrm{min}$ or m / s	StatusSpeed_ActualUnitrpmORmps	226	C4_3	-
688.19	Actual current rms	StatusCurrent_ActualDINT	230	132	-
1130.1	Acceleration / deceleration homing run	HOMING_accel	300	U32	Immediately
1130.3	speed for machine reference run	HOMING_speed	301	C4_3	Immediately
1130.4	adjusting the machine reference mode	HOMING_mode	302	U16	Immediately
1130.5	Machine Zero Offset	HOMING_home_offset	303	C4_3	Immediately
1130.7	Initiator adjustment	HOMING_edge_sensor_distance	304	C4_3	Immediately
1113.1	Deceleration upon STOP	STOP_decel	305	U32	Immediately
1113.2	Jerk for STOP	STOP jerk	306	U32	Immediately
1116.1	Deceleration for FSTOP1	FSTOP1_decel	307	U32	Immediately
1116.2	Jerk for FSTOP1	FSTOP1_jerk	308	U32	Immediately
1118.1	Deceleration for FSTOP3	FSTOP3_decel	309	U32	Immediately
1118.2	Jerk for FSTOP3	FSTOP3_jerk	310	U32	Immediately
1127.1	Acceleration / deceleration in speed control operating mode	SPEED_accel	311	U32	Immediately
1111.5	Acceleration jerk for positioning	POSITION_jerk_accel	313	U32	Immediately
1111.6	Deceleration jerk for positioning	POSITION_jerk_decel	314	U32	Immediately
1128.1	Acceleration for JOG +/-	JOG_accel	315	U32	Immediately
1128.3	Speed for Manual +/-	JOG_speed	316	C4_3	Immediately
402.1	maximum permissible positive speed	Limit_SpeedPositive	317	116	VP
402.2	maximum permissible negative speed	Limit_SpeedNegative	318	116	VP
402.3	maximum permissible positive current	Limit_CurrentPositive	319	116	VP
402.4	maximum permissible negative current	Limit_CurrentNegative	320	116	VP
410.2	Positive Travel Limit	LimitPosition_Positive	321	C4_3	Immediately
410.3	Negative SW travel limit	LimitPosition_Negative	322	C4_3	Immediately
680.4	Status demand position	StatusPosition_DemandValue	323	C4_3	-
681.4	Status demand speed of setpoint generator	StatusSpeed_DemandValue	324	C4_3	-
682.4	Status demand acceleration	StatusAccel_DemandValue	325	132	-
685.1	Status of auxiliary voltage	StatusVoltage_AuxiliaryVoltage	326	E2_6	-
685.2	Status DC bus voltage	StatusVoltage_BusVoltage	327	E2_6	-
420.1	positioning window for position reached	PositioningAccuracy_Window	328	C4_3	VP
420.7	In Position Window Time	PositioningAccuracy_WindowTime	329	U16	Immediately
420.2	Following error limit	PositioningAccuracy_FollowingErrorWin dow	330	C4_3	VP
420.3	Following Error Time	PositioningAccuracy_FollowingErrorTim eout	331	U16	Immediately
1125.1	Deceleration upon error	ERROR_decel	332	U32	Immediately
1125.2	Jerk upon Error	ERROR_jerk	333	U32	Immediately
683.2	Status of device load	StatusDevice_ActualDeviceLoad	334	E2_6	-
683.3	Status of long-term motor utilization	StatusDevice_ActualMotorLoad	335	E2_6	-
684.2	Status of motor temperature	StatusTemperature_Motor	336	116	-
684.1	Status of power output stage temperature	StatusTemperature_PowerStage	337	U16	-
210.10	setting objects to valid	ValidParameter_Global	338.10	U16	Immediately
20.1	Store objects permanently (bus)	ObjectDir_Objekts-->FLASH	339	116	Immediately
1128.2	Jerk for Manual +/-	JOG_jerk	340	U32	Immediately
3300.8	Beginning of Registration lock-out zone (Startlgnore)	TouchProbe_IgnoreZone_Start	364	C4_3	Immediately

No.	Object name	Object	PNU	Bus format	valid with
3300.9	End of Registration lock-out zone (Stoplgnore)	TouchProbe_IgnoreZone_End	365	C4_3	Immediately
2010.1	Velocity Feed Forward	FeedForward_Speed	400.1	U16	VP
2010.2	Acceleration feedforward	FeedForward_Accel	400.2	U16	VP
2010.4	Current feed-forward	FeedForward_Current	400.4	U16	VP
2010.5	Jerk feed-forward	FeedForward_Jerk	400.5	U16	VP
2011.1	External Speed Feed Forward Filter Time Constant	FeedForwardExternal_FilterSpeed	401.1	U16	VP
2011.2	External Acceleration Feed Forward Filter Time Constant	FeedForwardExternal_FilterAccel	401.2	U16	VP
2100.2	Stiffness (speed controller)	ControllerTuning_Stiffness	402.2	U16	VP
2100.3	damping (rotation speed controller)	ControllerTuning_Damping	402.3	U16	VP
2100.4	Inertia	ControllerTuning_Inertia	402.4	U16	VP
2100.5	Filter-actual velocity	ControllerTuning_FilterSpeed	402.5	U16	VP
2100.6	Filter - Actual acceleration	ControllerTuning_FilterAccel	402.6	U16	VP
2100.7	D-component of speed controller	ControllerTuning_SpeedDFactor	402.7	U16	VP
2100.8	Current regulator bandwidth	ControllerTuning_CurrentBandwidth	402.8	U16	VP
2100.9	Current loop - Damping	ControllerTuning_CurrentDamping	402.9	U16	VP
402.6	Factor for the current limits	Limit_CurrentFine	465	116	Immediately
950.1	1. Object of the setpoint PZD (Profibus)	FBI_RxPD_Mapping_Object_1	915.0	U16	Immediately
950.2	2. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_2	915.1	U16	Immediately
950.3	3. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_3	915.2	U16	Immediately
950.4	4. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_4	915.3	U16	Immediately
950.5	5. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_5	915.4	U16	Immediately
950.6	6. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_6	915.5	U16	Immediately
950.7	7. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_7	915.6	U16	Immediately
950.8	8. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_8	915.7	U16	Immediately
951.1	1. object of actual value PZD	FBI_TxPD_Mapping_Object_1	916.0	U16	Immediately
951.2	2. object of actual value PZD	FBI_TxPD_Mapping_Object_2	916.1	U16	Immediately
951.3	3. object of actual value PZD	FBI_TxPD_Mapping_Object_3	916.2	U16	Immediately
951.4	4. object of actual value PZD	FBI_TxPD_Mapping_Object_4	916.3	U16	Immediately
951.5	5. object of actual value PZD	FBI_TxPD_Mapping_Object_5	916.4	U16	Immediately
951.6	6. object of actual value PZD	FBI_TxPD_Mapping_Object_6	916.5	U16	Immediately
951.7	7. object of actual value PZD	FBI_TxPD_Mapping_Object_7	916.6	U16	Immediately
951.8	8. object of actual value PZD	FBI_TxPD_Mapping_Object_8	916.7	U16	Immediately
830.3	Node address	Profibus_NodeAddress	918	U16	-
830.4	Telegram selection switch	Profibus_TelegramSelect	922	U16	Immediately
830.6	List of Profidrive standard signals	Profibus_StandardSignalTable	923.x	U16	-
550.2	Error ($\mathrm{n}-1$) in the error history	ErrorHistory_1	947.1	U16	-
1.15	Profibus profile number	Device_ProfileID	965	OS	-

5.5.2. Object overview sorted by object name (I20132T11)

No.	Object name	Object	PNU	Bus format	valid with
2100.10	Filter actual velocity 2	ControllerTuning_FilterSpeed2		U16	VP
2100.4	Inertia	ControllerTuning_Inertia	402.4	U16	VP
2100.7	D-component of speed controller	ControllerTuning_SpeedDFactor	402.7	U16	VP
2100.2	Stiffness (speed controller)	ControllerTuning_Stiffness	402.2	U16	VP
1.15	Profibus profile number	Device_ProfileID	965	OS	-
120.2	Status of digital inputs	Digitallnput_Value		V2	-
121.2	input word of I/O option	DigitallnputAddition_Value	175	V2	-
133.3	output word for I/O option	DigitalOutputAddition_Value	176	V2	Immediately
2100.8	Current regulator bandwidth	ControllerTuning_CurrentBandwidth	402.8	U16	VP
2100.9	Current loop - Damping	ControllerTuning_CurrentDamping	402.9	U16	VP
2100.3	damping (rotation speed controller)	ControllerTuning_Damping	402.3	U16	VP
2100.6	Filter - Actual acceleration	ControllerTuning_FilterAccel	402.6	U16	VP
2100.21	Filter - Actual acceleration	ControllerTuning_FilterAccel_us		U16	VP
2100.11	Filter actual acceleration 2	ControllerTuning_FilterAccel2		U16	VP
2100.5	Filter-actual velocity	ControllerTuning_FilterSpeed	402.5	U16	VP
2100.20	Control signal filter of velocity control	ControllerTuning_FilterSpeed_us		U16	VP
2230.20	Ratio direct to quadrature inductance	D_CurrentController_Ld_Lq_Ratio		U16	VP
2230.24	Activation of the voltage decoupling	D_CurrentController_VoltageDecouplin gEnable		116	VP
990.1	Setpoint delay for bus master	Delay_MasterDelay		116	Immediately
84.4	Current RS485 address of the C3M	DeviceSupervision_DeviceAdr		U16	-
84.3	Number of devices in the C3M combination	DeviceSupervision_DeviceCounter		U16	-
84.5	Hours of operation of the PSUP in s	DeviceSupervision_OperatingTime		U32	-
84.2	Device number in the C3M combination	DeviceSupervision_ThisDevice		U16	-
85.1	PSUP operating state	Diagnostics_DeviceState		V2	Immediately
120.3	Status of digital inputs	Digitallnput_DebouncedValue	21	V2	-
140.3	Command value of the digital outputs	DigitalOutputWord_DemandState	22	V2	Immediately
550.2	Error ($\mathrm{n}-1$) in the error history	ErrorHistory_1	947.1	U16	-
87.1	Error 1	ErrorHistoryNumber_1		U16	-
86.1	Pointer to current error	ErrorHistoryPointer_LastEntry		U16	-
88.1	Error point in time 1	ErrorHistoryTime_1		U32	-
2020.1	Position from external signal source	ExternalSignal_Position		C4_3	-
950.1	1. Object of the setpoint PZD (Profibus)	FBI_RxPD_Mapping_Object_1	915.0	U16	Immediately
950.2	2. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_2	915.1	U16	Immediately
950.3	3. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_3	915.2	U16	Immediately
950.4	4. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_4	915.3	U16	1 mmediately
950.5	5. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_5	915.4	U16	Immediately
950.6	6. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_6	915.5	U16	Immediately
950.7	7. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_7	915.6	U16	Immediately
950.8	8. object of the Setpoint value PZD	FBI_RxPD_Mapping_Object_8	915.7	U16	Immediately
951.1	1. object of actual value PZD	FBI_TxPD_Mapping_Object_1	916.0	U16	Immediately
951.2	2. object of actual value PZD	FBI_TxPD_Mapping_Object_2	916.1	U16	Immediately
951.3	3. object of actual value PZD	FBI_TxPD_Mapping_Object_3	916.2	U16	Immediately
951.4	4. object of actual value PZD	FBI_TxPD_Mapping_Object_4	916.3	U16	1 mmediately
951.5	5. object of actual value PZD	FBI_TxPD_Mapping_Object_5	916.4	U16	Immediately
951.6	6. object of actual value PZD	FBI_TxPD_Mapping_Object_6	916.5	U16	Immediately
951.7	7. object of actual value PZD	FBI_TxPD_Mapping_Object_7	916.6	U16	Immediately
951.8	8. object of actual value PZD	FBI_TxPD_Mapping_Object_8	916.7	U16	Immediately
2010.2	Acceleration feedforward	FeedForward_Accel	400.2	U16	VP
2010.4	Current feed-forward	FeedForward_Current	400.4	U16	VP
2010.20	EMC feed forward	FeedForward_EMF		U16	VP
2010.5	Jerk feed-forward	FeedForward_Jerk	400.5	U16	VP
2010.1	Velocity Feed Forward	FeedForward_Speed	400.1	U16	VP
2011.2	External Acceleration Feed Forward Filter Time Constant	FeedForwardExternal_FilterAccel	401.2	U16	VP
2011.5	Filter time constant ext. Acceleration	FeedForwardExternal_FilterAccel_us		U16	VP
2011.1	External Speed Feed Forward Filter Time Constant	FeedForwardExternal_FilterSpeed	401.1	U16	VP

No.	Object name	Object	PNU	Bus format	valid with
2011.4	Filter time constant ext. speed	FeedForwardExternal_FilterSpeed_us		U16	VP
402.4	maximum permissible negative current	Limit_CurrentNegative	320	116	VP
402.3	maximum permissible positive current	Limit_CurrentPositive	319	116	VP
402.2	maximum permissible negative speed	Limit_SpeedNegative	318	116	VP
402.1	maximum permissible positive speed	Limit_SpeedPositive	317	116	VP
410.6	Position difference load-motor (error threshold)	LimitPosition_LoadControlMaxPosDiff		C4_3	VP
410.3	Negative SW travel limit	LimitPosition_Negative	322	C4_3	Immediately
410.2	Positive Travel Limit	LimitPosition_Positive	321	C4_3	Immediately
2240.7	Magnetization current controller bandwidth (ASM)	Magnetisierungsstromregler_Bandwidth		I16	VP
2240.4	Magnetization current controller attenuation(ASM)	Magnetisierungsstromregler_Damping		116	VP
2240.11	Reference speed quantifier (ASM)	Magnetisierungsstromregler_Field weakening speed		116	VP
2240.2	Magnetization current quantifier (ASM)	Magnetisierungsstromregler_Imrn_Dem andValueTuning		116	VP
2240.10	Motor Time Constant quantifier	Magnetisierungsstromregler_RotorTime Constant		116	VP
2240.9	Slip frequency quantifier (ASM)	Magnetisierungsstromregler_SlipFreque ncy		116	VP
20.1	Store objects permanently (bus)	ObjectDir_Objekts-->FLASH	339	116	Immediately
2200.3	Optimization parameters for the position controller P component (KV factor)	PositionController_ProportionalPart		U16	VP
420.3	Following Error Time	PositioningAccuracy_FollowingErrorTim eout	331	U16	Immediately
420.2	Following error limit	PositioningAccuracy_FollowingErrorWin dow	330	C4_3	VP
420.1	positioning window for position reached	PositioningAccuracy_Window	328	C4_3	VP
420.7	In Position Window Time	PositioningAccuracy_WindowTime	329	U16	Immediately
2220.22	Parameter motor force constant	Q_CurrentController_BackEMF		116	VP
2220.6	Current Loop I term	Q_CurrentController_CurrentControllnte gralPart		I16	VP
2220.5	Current Loop - "P" Term	Q_CurrentController_CurrentControlPro portionalPart		116	VP
2220.20	Parameter motor inductance	Q_CurrentController_Inductance		116	VP
2220.21	Parameter motor resistance	Q_CurrentController_Resistance		116	VP
2220.27	Structure switch of current control	Q_CurrentController_StructureSelection		116	VP
280.5	Resolver excitation level	Resolver_ExcitationLevel		U16	Immediately
280.3	Resolver signal scaling	Resolver_LevelAdaption		116	Immediately
2210.17	Replacement time constant for the velocity control	SpeedController_ActualBandwidth		I32	-
2210.5	Weighting "I" term	SpeedController_I_Part_Gain		U16	VP
2210.4	P term quantifier	SpeedController_P_Part_Gain		U16	VP
2120.7	Switch to enable disturbance compensation	SpeedObserver_DisturbanceAdditionEn able		116	VP
2120.5	Time constant disturbance filter	SpeedObserver_DisturbanceFilter		U32	VP
2120.1	Rapidity of the speed monitor	SpeedObserver_TimeConstant		U32	VP
295.10	SSI feedback position (Increments)	SSI_Feedback_Incr_Position		132	-
682.5	Status of actual acceleration unfiltered	StatusAccel_Actual		132	-
682.6	Status of filtered actual acceleration	StatusAccel_ActualFilter		132	-
682.4	Status demand acceleration	StatusAccel_DemandValue	325	132	-
682.7	Status acceleration feed forward	StatusAccel_FeedForwardAccel		C4_3	-
690.5	Current increase steps automatic commutation	StatusAutocommutation_Itterations		U16	-
688.2	Status of actual current RMS (torque producing)	StatusCurrent_Actual		E2_6	-
688.19	Actual current rms	StatusCurrent_ActualDINT	230	132	-
688.8	Status control deviation current control RMS	StatusCurrent_ControlDeviationlq		C4_3	-
688.31	Signal decoupling of direct current controller	StatusCurrent_DecouplingVoltageUd		C4_3	-
688.32	Signal EMC feed forward	StatusCurrent_FeedForwardbackEMF		C4_3	-
688.14	Status of current \& jerk feedforward	StatusCurrent_FeedForwordCurrentJer k		C4_3	-

No.	Object name	Object	PNU	Bus format	valid with
688.34	Negative current limit effective at present	StatusCurrent_NegativeLimit		132	-
688.9	Status of current phase U	StatusCurrent_PhaseU		C4_3	-
688.10	Status of current phase V	StatusCurrent_PhaseV		C4_3	-
688.33	Positive current limit effective at present	StatusCurrent_PositiveLimit		132	-
688.1	Status of setpoint current RMS (torque forming)	StatusCurrent_Reference		E2_6	-
688.18	Demand current rms	StatusCurrent_ReferenceDINT		132	-
688.13	Status of demand jerk setpoint generator	StatusCurrent_ReferenceJerk		132	-
688.11	Status of current control control signal	StatusCurrent_ReferenceVoltageUq		C4_3	-
688.22	Provided voltage pointer	StatusCurrent_ReferenceVoltageVector		C4_3	-
688.30	Provided voltage of direct current controller	StatusCurrent_VoltageUd		C4_3	-
688.29	Provided voltage of quadrature current controller	StatusCurrent_VoltageUq		C4_3	-
683.1	Status of actual current value	StatusDevice_ActualCurrent	112	E2_6	-
683.2	Status of device load	StatusDevice_ActualDeviceLoad	334	E2_6	-
683.3	Status of long-term motor utilization	StatusDevice_ActualMotorLoad	335	E2_6	-
683.7	Status of short-term braking resistor utilization	StatusDevice_BallastResistorDynamicL oad		C4_3	-
683.6	Status of long-term braking resistor utilization	StatusDevice_BallastResistorLoad		C4_3	-
683.12	Braking resistor switch-off voltage	StatusDevice_BallastResistorOFFThres hold		C4_3	-
683.11	Braking resistor switch-on voltage	StatusDevice_BallastResistorONThresh old		C4_3	-
683.5	Status of observed disturbance	StatusDevice_ObservedDisturbance		C4_3	-
692.4	Status of analog input cosine	StatusFeedback_EncoderCosine		132	-
692.24	Status of analog input cosine (Volt)	StatusFeedback_EncoderCosineVolts		C4_3	-
692.3	Status of analog input sine	StatusFeedback_EncoderSine		132	-
692.23	Status of analog input sine (Volt)	StatusFeedback_EncoderSineVolts		C4_3	-
692.2	Status of cosine in signal processing	StatusFeedback_FeedbackCosineDSP		132	-
692.22	Status of cosine in signal processing	StatusFeedback_FeedbackCosineDSP volts		C4_3	-
692.1	Status of sine in signal processing	StatusFeedback_FeedbackSineDSP		132	-
692.21	Status of sine in signal processing	StatusFeedback_FeedbackSineDSPvolt s		C4_3	-
692.5	Status of feedback level	StatusFeedback_FeedbackVoltage[Vpp]		C4_3	-
692.10	Status feedback index track	StatusFeedback_RefChannel		116	-
692.9	Status resolver level	StatusFeedback_ResolverLevel		C4_3	-
699.4	Status of demand jerk setpoint generator	StatusJerk_DemandValue		132	-
680.5	Status actual position	StatusPosition_Actual	28	C4_3	-
680.12	Status demand position without absolute reference	StatusPosition_DemandController		C4_3	-
680.4	Status demand position	StatusPosition_DemandValue	323	C4_3	-
680.14	Feedback absolute position in feedback increments	StatusPosition_FeedbackAbsolute		I32	-
680.6	Status of tracking error	StatusPosition_FollowingError	100	C4_3	-
680.23	Actual position of the load	StatusPosition_LoadControlActual		C4_3	-
680.20	Position difference load-motor (unfiltered)	StatusPosition_LoadControlDeviation		C4_3	-
680.22	Position difference load-motor (filtered)	StatusPosition_LoadControIDeviationFil tered		C4_3	-
680.21	Maximum position difference load-motor	StatusPosition_LoadControlDeviationM ax		C4_3	-
681.5	Status actual speed unfiltered	StatusSpeed_Actual		C4_3	-
681.9	Status actual speed filtered	StatusSpeed_ActualFiltered	8	C4_3	-
681.7	Status of the actual filtered speed speed in the Y2 format	StatusSpeed_ActualFilteredY2	6	Y2	-
681.8	Status of the actual filtered peed in the Y 4 format	StatusSpeed_ActualFilteredY4	117	Y4	-
681.12	Filtered actual speed in per cent	StatusSpeed_ActualScaled		C4_3	-
681.26	Status of actual speed filtered in 1/min or m/s	StatusSpeed_ActualUnitrpmORmps	226	C4_3	-
681.13	Setpoint speed of the setpoint generator	StatusSpeed_DemandScaled		C4_3	-
681.10	Status demand speed controller input	StatusSpeed_DemandSpeedController		C4_3	-

No.	Object name	Object	PNU	Bus format	valid with
681.4	Status demand speed of setpoint generator	StatusSpeed_DemandValue	324	C4_3	-
681.6	Status control deviation of speed	StatusSpeed_Error	101	C4_3	-
681.11	Status speed feed forward	StatusSpeed_FeedForwardSpeed		C4_3	-
681.20	Speed of the load feedback (unfiltered)	StatusSpeed_LoadControl		C4_3	-
681.21	Speed of the load feedback (filtered)	StatusSpeed_LoadControlFiltered		C4_3	-
681.25	Negative speed limit currently effective	StatusSpeed_NegativeLimit		C4_3	-
681.24	Positive speed limit currently effective	StatusSpeed_PositiveLimit		C4_3	-
684.2	Status of motor temperature	StatusTemperature_Motor	336	116	-
684.1	Status of power output stage temperature	StatusTemperature_PowerStage	337	U16	-
685.3	Status of analog input 0	StatusVoltage_AnalogInput0	23	Y2	-
685.4	Status of analog input 1	StatusVoltage_AnalogInput1	102	Y2	-
685.1	Status of auxiliary voltage	StatusVoltage_AuxiliaryVoltage	326	E2_6	-
685.2	Status DC bus voltage	StatusVoltage_BusVoltage	327	E2_6	-
210.10	setting objects to valid	ValidParameter_Global	338.10	U16	Immediately
1901.1	variable Column 1 Row 1	Col01_Row01	130/341.1	Y4	Immediately
1902.1	variable Column 2 Row 1	Col02_Row01	135/342.1	Y2	Immediately
1903.1	variable Column 3 Row 1	Col03_Row01	140/343.1	116	Immediately
1904.1	variable Column 4 Row 1	Col04_Row01	145/344.1	116	Immediately
1905.1	variable Column 5 Row 1	Col05_Row01	150/345.1	116	Immediately
1906.1	variable Column 6 Row 1	Col06_Row01	155/346.1	132	Immediately
1907.1	variable Column 7 Row 1	Col07_Row01	160/347.1	132	Immediately
1908.1	variable Column 8 Row 1	Col08_Row01	165/348.1	132	Immediately
1909.1	variable Column 9 Row 1	Col09_Row01	170/349.1	132	Immediately
1910.1	indirect table access Column 1	Indirect_Col01	181	Y4	Immediately
1900.1	pointer to table row	Pointer_Row	180	U16	Immediately
170.3	Filter of analog input 0	AnalogInput0_FilterCoefficient		116	VP
171.3	Filter of analog input 1	AnalogInput1_FilterCoefficient		116	VP
2190.2	Start current of automatic commutation	AutoCommutationControl_InitialCurrent		U16	VP
2190.4	Motion reduction Automatic commutation	AutoCommutationControl_MotionReduc tion		U16	VP
2190.8	Reduction of the peak current	AutoCommutationControl_PeakCurrent		U16	VP
2190.3	Motion limit for automatic commutation	AutoCommutationControl_PositionThre shold		U16	VP
2190.1	Ramp slope current slope AK	AutoCommutationControl_Ramptime		U16	VP
2190.10	Reset automatic commutation	AutoCommutationControl_Reset		U16	Immediately
2190.7	Optimization of the standstill threshold	AutoCommutationControl_StandstillThr eshold		U16	VP
1100.3	STW control word	DeviceControl_Controlword_1	1	V2	Immediately
1100.4	Control word 2	DeviceControl_Controlword_2	3	V2	Immediately
1100.6	Device demand value A	DeviceControl_DemandValue1	27 (Profinet only)	Y4	Immediately
1100.17	Demand value force	DeviceControl_DemandValue11	223	132	Immediately
1100.18	Demand value of force gradient	DeviceControl_DemandValue12	224	I32	Immediately
1100.7	Device demand value D	DeviceControl_DemandValue2		Y4	Immediately
1100.14	Device demand value	DeviceControl_DemandValue2_Y2		Y2	Immediately
1100.8	Device demand value C	DeviceControl_DemandValue3		Y2	Immediately
1100.13	Nominal value	DeviceControl_DemandValue8		Y4	Immediately
1100.5	Operating mode (Nominal value)	DeviceControl_OperationMode	127/930	116	Immediately
1000.5	operating mode display	DeviceState_ActualOperationMode	128	116	Immediately
1000.3	status word ZSW	DeviceState_Statusword_1	2	V2	Immediately
1000.4	Status word 2	DeviceState_Statusword_2	4	V2	Immediately
85.8	Chopper Switch-off threshold in V	Diagnostics_ChopperOff_Voltage		116	-
85.7	Chopper Switch-on threshold in V	Diagnostics_ChopperOn_Voltage		116	-
85.3	PSUP intermediate current	Diagnostics_DCbus_Current		116	-
85.2	PSUP DC intermediate voltage	Diagnostics_DCbus_Voltage		116	-
85.9	Reduced DC bus voltage in V	Diagnostics_DCbus_VoltageMax		116	-
85.5	PSUP usage in \%	Diagnostics_RectifierLoad		116	-
85.4	PSUP heat dissipator temperature	Diagnostics_TemperatureHeatSink		116	-
620.6	Zero pulse offset encoder emulation	EncoderEmulation_Offset		C4_3	VP
620.7	Encoder simulation teaching zero pulse	EncoderEmulation_SetEmulationZero		116	Immediately

No.	Object name	Object	PNU	Bus format	valid with
620.10	Demand position of encoder simulation (without offset)	EncoderEmulation_Setpoint_without_off set		C4_3	-
1125.1	Deceleration upon error	ERROR_decel	332	U32	Immediately
1125.2	Jerk upon Error	ERROR_jerk	333	U32	1 mmediately
550.1	current error (n)	ErrorHistory_LastError	115/947.0	U16	-
2020.7	Acceleration of the external signal source	ExternalSignal_Accel_Munits		I32	-
2020.6	Speed value of the external signal source	ExternalSignal_Speed_Munits		C4_3	-
1116.1	Deceleration for FSTOP1	FSTOP1_decel	307	U32	Immediately
1116.2	Jerk for FSTOP1	FSTOP1 jerk	308	U32	Immediately
1118.1	Deceleration for FSTOP3	FSTOP3_decel	309	U32	Immediately
1118.2	Jerk for FSTOP3	FSTOP3 jerk	310	U32	Immediately
3920.7	Output of the Heda Tracking Filter	HEDA_SignalProcessing_OutputGreat		C4_3	-
1130.1	Acceleration / deceleration homing run	HOMING_accel	300	U32	Immediately
1130.13	Distance MN (zero) initiator - motor zero	HOMING_edge_position		C4_3	Immediately
1130.7	Initiator adjustment	HOMING_edge_sensor_distance	304	C4_3	Immediately
1130.5	Machine Zero Offset	HOMING_home_offset	303	C4_3	Immediately
1130.4	adjusting the machine reference mode	HOMING_mode	302	U16	Immediately
1130.3	speed for machine reference run	HOMING_speed	301	C4_3	Immediately
1128.1	Acceleration for JOG +/-	JOG_accel	315	U32	Immediately
1128.2	Jerk for Manual +/-	JOG_jerk	340	U32	Immediately
1128.3	Speed for Manual +/-	JOG_speed	316	C4_3	1 mmediately
402.6	Factor for the current limits	Limit_CurrentFine	465	116	Immediately
2201.2	Load control command mode	LoadControl_Command		116	Immediately
2201.1	Activate load control	LoadControl_Enable		116	Immediately
2201.11	Time constant of position difference filter	LoadControl_FilterLaggingPart		U32	VP
2201.3	Load control status bits	LoadControl_Status		116	-
2201.12	Time constant of the load-speed filter	LoadControl_VelocityFilter		116	VP
2201.13	Load control intervention speed limitation	LoadControl_VelocityLimit		116	VP
2150.2	Bandwidth of notch filter 1	NotchFilter_BandwidthFilter1		116	VP
2150.5	Bandwidth of notch filter 2	NotchFilter_BandwidthFilter2		116	VP
2150.3	Depth of notch filter 1	NotchFilter_DepthFilter1		132	VP
2150.6	Depth of notch filter 2	NotchFilter_DepthFilter2		132	VP
2150.1	Center frequency of notch filter 1	NotchFilter_FrequencyFilter1		116	VP
2150.4	Center frequency of notch filter 2	NotchFilter_FrequencyFilter2		116	VP
1211.13	Manipulation of the motion direction in reset mode	PG2POSITION_direction		132	1 mmediately
1252.20	Status RegMove	PG2RegMove_ParametersModified		116	Immediately
1111.3	Acceleration for positioning	POSITION_accel	114	U32	Immediately
1111.10	Acceleration for positioning in U16 Format	POSITION_accel_U16	113	U16	Immediately
1111.4	Deceleration for positioning	POSITION_decel	178/312	U32	Immediately
1111.16	Deceleration for Positioning in U16 Format	POSITION_decel_U16	177	U16	1 mmediately
1111.13	Manipulation of the motion direction in reset mode	POSITION_direction		132	Immediately
1111.5	Acceleration jerk for positioning	POSITION_jerk_accel	313	U32	Immediately
1111.6	Deceleration jerk for positioning	POSITION_jerk_decel	314	U32	Immediately
1111.1	Target position	POSITION_position	27 (Profibus only)	C4_3	Immediately
1111.11		POSITION_position_Y4	118	Y4	Immediately
1111.8	Continuous mode	POSITION_resetpositon_mode	0	U16	Immediately
1111.2	Speed for positioning	POSITION_speed	111	C4_3	Immediately
2200.20	Deadband of position controller	PositionController_DeadBand		C4_3	VP
2200.21	Friction compensation	PositionController_FrictionCompensatio n		I32	VP
2200.25	I term of position controller	PositionController_IntegralPart		U16	VP
2200.11	Following error filter of the position controller	PositionController_TrackingErrorFilter		U16	VP
2200.24	Time constant following error filter of position controller	PositionController_TrackingErrorFilter_ us		U16	VP
830.3	Node address	Profibus_NodeAddress	918	U16	-
830.6	List of Profidrive standard signals	Profibus_StandardSignalTable	923.x	U16	-
830.4	Telegram selection switch	Profibus_TelegramSelect	922	U16	Immediately
1152.20	Status RegMove	RegMove_ParametersModified		116	Immediately

No.	Object name	Object	PNU	Bus format	valid with
1127.1	Acceleration / deceleration in speed control operating mode	SPEED_accel	311	U32	Immediately
1127.3	Setpoint speed in speed control operating mode	SPEED_speed	7	C4_3	Immediately
295.12	Rotation position	SSI_Feedback_PositionGreat		132	-
688.17	Reciprocal of the field weakening factor FF	StatusCurrent_FieldWeakeningFactor		C4_3	-
680.8	Status of actual position in bus format Y4	StatusPosition_ActualY4	119	I32	-
684.4	Status of motor temperature resistance value	StatusTemperature_TmotResistance		U16	-
670.4	Status of actual force	StatusTorqueForce_ActualForce		132	-
670.2	Status of actual torque	StatusTorqueForce_ActualTorque	209	132	-
1113.1	Deceleration upon STOP	STOP_decel	305	U32	Immediately
1113.2	Jerk for STOP	STOP jerk	306	U32	Immediately
110.1	Value of the function switch on C3M	Switch_DeviceFunction		U16	-
3300.9	End of Registration lock-out zone (Stoplgnore)	TouchProbe_IgnoreZone_End	365	C4_3	Immediately
3300.8	Beginning of Registration lock-out zone (Startlgnore)	TouchProbe_IgnoreZone_Start	364	C4_3	Immediately
2109.1	Time constant tracking filter HEDA-process position	TrackingfilterHEDA_TRFSpeed		116	VP
2107.1	Time constant tracking filter physical source	TrackingfilterPhysicalSource_TRFSpee d		U16	VP
2110.4	Filter effect of acceleration filter setpoint encoder	TrackingfilterSG1_AccelFilter		U16	VP
2110.7	Filter time constant acceleration setpoint generator	TrackingfilterSG1_AccelFilter_us		U16	VP
2110.3	Filter effect of speed filter setpoint encoder	TrackingfilterSG1_FilterSpeed		U16	VP
2110.6	Filter time constant velocity setpoint generator	TrackingfilterSG1_FilterSpeed_us		U16	VP
2110.1	Time constant tracking filter setpoint encoder	TrackingfilterSG1_TRFSpeed		116	VP
634.6	Offset value for the D/A monitor 0	AnalogOutput0_Offset_Hardware		116	VP
635.6	Offset value for the D/A Monitor 1	AnalogOutput1_Offset_Hardware		116	VP
170.2	Gain analog input 0	AnalogInput0_Gain		C4_3	VP
170.4	Analog input Offset 0	AnalogInput0_Offset		116	Immediately
171.2	Gain analog input 1	AnalogInput1_Gain		C4_3	VP
171.4	Analog input offset 1	Analoglnput1_Offset		116	Immediately
634.4	Setpoint for analog output 0	AnalogOutput0_DemandValue	24	116	Immediately
634.7	Additional gain factor for the D/A monitor 0	AnalogOutput0_Gain_Hardware		C4_3	VP
635.4	Setpoint for analog output 1	AnalogOutput1_DemandValue	103	116	Immediately
635.7	Additional gain factor for the D/A monitor 1	AnalogOutput1_Gain_Hardware		C4_3	VP

A detailed object list can be found in the corresponding online help.

5.5.3. Data formats of the bus objects

In this chapter you can read about:

Integer formats	331
Unsigned - Formats	331
Fixed point format E2_6.	331
Fixed point format C4_3	332
Bus format Y 2 and Y 4 .	332
Bit sequence V2	. 33
Byte string OS	333

5.5.3.1 Integer formats

Twos complement representation;
The highest order bit (MSB) is the bit after the sign bit (VZ) in the first byte.
$\mathrm{VZ}==0$: positive numbers and zero; $\mathrm{VZ}==1$: negative numbers

Type	Bit	8	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Integer 8 length: 1 Byte		VZ	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
Integer 16	MSB	VZ	2^{14}	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}
Length: 1 Word	LSB	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
Integer 32	MSB	VZ	2^{30}	2^{29}	2^{28}	2^{27}	2^{26}	2^{25}	2^{24}
Length: 2 Words		2^{23}	2^{22}	2^{21}	2^{20}	2^{19}	2^{18}	2^{17}	2^{16}
		2^{15}	2^{14}	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}
	LSB	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

5.5.3.2 Unsigned - Formats

Type	Bit	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Unsigned 8 Length: $\mathbf{1}$ Byte		2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
Unsigned 16	MSB	2^{15}	2^{14}	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}
Length: $\mathbf{1}$ Word	LSB	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
Unsigned 32	MSB	2^{31}	2^{30}	2^{29}	2^{28}	2^{27}	2^{26}	2^{25}	2^{24}
Length: 2 Words		2^{23}	2^{22}	2^{21}	2^{20}	2^{19}	2^{18}	2^{17}	2^{16}
		2^{15}	2^{14}	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}
	LSB	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

5.5.3.3 Fixed point format E2_6

Linear fixed point value with six binary places after the decimal point. 0 corresponds to 0,256 corresponds to 2^{14} (0×4000).
Twos complement representation;
MSB is the bit after the sign bit
$\mathrm{VZ}==0$: positive numbers and zero;
$\mathrm{VZ}==1$: negative numbers

Type	Bit	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
E2_6	MSB	VZ	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}
Length: $\mathbf{1}$ Word	LSB	2^{1}	2^{0}	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}

5.5.3.4 Fixed point format C4_3

Linear fixed point value with three decimal places after the decimal point. 0 corresponds to 0 and 0,001 corresponds to 2° (0×00000001).
Structure like data type Integer32, value of the bits reduced by a factor of 1000. Length: 2 Words

5.5.3.5 Bus format Y2 and Y4

Structure:

- Y2 like data type Integer16
- Y4 like data type Integer32

The values can be adjusted by a normalization factor.
The following rules apply:

- Normalization factor for Y2: Object 200.1, ... 200.5
- Normalization factor for Y4: Object 201.1, ... 201.5

There are different normalization factors for individual values

1. Y2 - normalization factors

- Object 200.1: NormFactorY2_Speed: Normalization factor for Y2 speeds
- Object 200.2: NormFactorY2_Position: Normalization factor for Y2 positions
- Object 200.3: NormFactorY2_Voltage: Normalization factor for Y2 voltages
- Object 200.4: Normalization factor for 1100.8 (T30, T40)
- Object 200.5: NormFactorY2_Array_Col2: Normalization factor for Column 2 of the recipe array
- Object 200.6: Normalization factor for 1100.9 (T30, T40)
- Object 200.7 Normalization factor for 1000.8
- Object 200.8: Normalization factor for 1000.9 (T30, T40)
- Object 200.9: Normalization factor for 1100.14 (T30, T40)
- Object 200.10: Normalization factor for 1000.14 (T30, T40)
- Object 200.11: Normalization factor for Y2 currents (638.35 ... 638.40) (T30, T40)

2. Y4 - normalization factors

- Object 201.1: NormFactorY4_Speed: Normalization factor for Y4 speeds
- Object 201.2: NormFactorY4_Position: Normalization factor for Y4 positions
- Object 201.3: NormFactorY4_Voltage: Normalization factor for Y4 voltages
- Object 201.4: NormFactorY4_Array_Col1: Normalization factor for Column 1 of the recipe array
- Object 201.5: Normalization factor for 1100.6
- Object 201.6: Normalization factor for 1100.7
- Object 201.7 Normalization factor for 1000.6 (T30, T40)
- Object 201.8: Normalization factor for 1000.7 (T30, T40)
- Object 201.11: Normalization factor for bus interpolation

CANSync/EthernetPowerLink

- 1100.6 = DeviceControl_DemandValue1 (DS 402 : Target position 0x607A in the "Cyclic Synchronous Position" Operation Mode)
- 3921.1 = FBI_SignalProcessing0_Input (DS 402 : Interpolation data record 0x60C1.1 in the "Interpolated Position" Operation Mode) (resulting in $3921.6=$ FBI_SignalProcessing0_Output and
- $392 \overline{1} .7$ = FBI_SignalProcessing0_OutputGreat)
- Object 201.12: - Normalization factor for 1100.13 = DeviceControl_DemandValue8 (DS 402: Target Velocity 0x60FF in "Profile velocity (pv)" and "cyclic synchronous velocity (csv)" Operation Mode)
- Object 201.13: Normalization factor for 1000.13 = DeviceState_ActualValue8 (T30, T40)
- Object 201.14: Normalization factor for $3925.20=$ FBR_InterpolationAccellnput
- Object 201.15: Normalization factor for $3925.21=$ FBR_InterpolationAccellnput

Meaning of the normalization factors

Bit 5: Meaning of the normalization factor:

- Bit $5=$ " 0 ": decimal factors $1,1 / 10,1 / 100, .$. Bit 4 ... Bit 0: Normalization factor

$\#$	Bit $4 \ldots 0$	Factor dec (Bit $5=0) \mathrm{yy} 0 \mathrm{xxxxx}$	
0	00000	10^{0}	1
1	00001	10^{-1}	0.1
2	00010	10^{-2}	0.01
3	00011	10^{-3}	0.001
4	00100	10^{-4}	0.0001
5	00101	10^{-5}	0.00001
6	00110	10^{-6}	0.000001
7	00111	10^{-7}	0.0000001
8	01000	10^{-8}	0.00000001
9	01001	10^{-9}	0.000000001

- Bit 5 = "1": binary factors $1,1 / 2,1 / 4,1 / 8, \ldots$

Bit 4 ... Bit 0: Normalization factor

$\#$	Bit $4 \ldots 0$	Factor bin (Bit $5=1$) yy1x xxxx	
32	00000	2^{0}	1
33	00001	2^{-1}	0.5
34	00010	2^{-2}	0.25
35	00011	2^{-3}	0.125
36	00100	2^{-4}	0.0625
37	00101	2^{-5}	0.03125
38	00110	2^{-6}	0.015625
39	00111	2^{-7}	0.0078125
40	01000	2^{-8}	0.00390625
41	01001	2^{-9}	0.001953125
42	01010	2^{-10}	0.0009765625
43	01011	2^{-11}	0.00048828125
44	01100	2^{-12}	0.000244140625
45	01101	2^{-13}	0.0001220703125
46	01110	2^{-14}	0.00006103515625
47	01111	2^{-15}	0.000030517578125
48	10000	2^{-16}	0.0000152587890625
49	10001	2^{-17}	0.00000762939453125
50	10010	2^{-18}	0.000003814697265625
51	10011	2^{-19}	0.0000019073486328125
52	10100	2^{-20}	0.00000095367431640625
53	10101	2^{-21}	0.000000476837158203125
54	10110	2^{-22}	0.0000002384185791015625
55	10111	2^{-23}	0.00000011920928955078125
56	11000	2^{-24}	0.000000059604644775390625

- Bit 15 ... Bit 6: reserved

5.5.3.6 Bit sequence V2

The V2 bus format is a bit sequence with a length of 16 bits.

5.5.3.7 Byte string OS

Octet string OS: String with variable length.

6. Status values

In this chapter you can read about:

D/A-Monitor .. 334

A list of the status values supports you in optimization and commissioning. Open the optimization function in the C3 ServoManager (double-click on optimization in the tree)
You will find the available status values in the lower right part of the window under selection (TAB) "Status values".
You can pull them into the oscilloscope (upper part of the left side) or into the status display (upper part of the right side) by the aid of the mouse (drag and drop).
The status values are divided into 2 groups (user levels):
standard: here you can find all important status values
advanced:Advanced status values, require a better knowledge
Switching of the The user level can be changed in the optimization window (left hand side lower part user level under selection (TAB) "optimization") with the following button.

6.1 D/A-Monitor

A part of the status values can be output via the D/A monitor channel 0 (X11/4) and channel 1 (X11/3).In the following status list under D/A monitor output: possible / not possible).
The reference for the output voltage can be entered individually in the reference unit of the status value.

Example: Output Object 2210.2: (actual speed unfiltered)

In order to get an output voltage of 10 V at 3000 prm , please enter rev/s (=3000rpm) as "value of the signal at 10 V ".

Hint

The unit of measurement of the D/A monitor values differs from the unit of measurement of the status values.

Additional information on the topic of "status values" can be found in the online help of the device.

7. Error

Standard error reactions:
Reaction 2: Downramp with "de-energize" then apply brake (see on page 271) and finally de-energize.
For errors with standard reaction 2 the error reaction can be changed (see on page 149)

Reaction 5: de-energize immediately (without ramps), apply brake.

Caution! A Z-axis may drop down due to the brake delay times

Pending errors can be acknowledged with Quit!

Object 550.1 displays error:

value 1 means "no error".

The errors as well as the error history can be viewed in the C3 ServoManager under optimization (at the top right of the optimization window).
Detailed information on the topic of the "error list" can be found in the online help of the device.

8. Order code

In this chapter you can read about:

337Order code for mains module: PSUP 338
Order code for accessories. 338

8.1 Order code device: Compax3

Example: C3S025V2F10I10T10M00 C3								
Device type: Compax3								
Single axis	S							--
Highpower	H							--
Multi-axis device	M							
Device currents static/dynamic; supply voltage								
2.5A / 5A ; 230VAC (single phase)	S	025	V2					--
$6.3 \mathrm{~A} / 12.6 \mathrm{~A}$; 230VAC (1 phase)	S	063	V2					--
10A / 20A ; 230VAC (three phase)	S	100	V2					--
15A / 30A ; 230VAC (three phase)	S	150	V2					--
1.5A / 4.5A ; 400VAC (three phase)	S	015	V4					--
3.8 A / 7.5 A ; 400VAC (3 phase)	S	038	V4					--
7.5 A / 15.0 A ; 400VAC (3 phase)	S	075	V4					--
15.0 A / 30.0 A ; 400VAC (3 phase)	S	150	V4					--
30.0 A / 60.0 A ; 400VAC (3 phase)	S	300	V4					--
50A / 75A ; 400VAC (three phase)	H	050	V4					--
90A / 135A ; 400VAC (three phase)	H	090	V4					--
125A / 187.5A ; 400VAC (three phase)*	H	125	V4					--
155A / 232.5A ; 400VAC (three phase)*	H	155	V4					--
5.0A / 10,0A ; 400VAC (three phase)	M	050	D6					
10A / 20A ; 400VAC (three phase)	M	100	D6					
15A / 30A ; 400VAC (three phase)	M	150	D6					
60A 30A / ; 400VAC (three phase)	M	300	D6					
Feedback:								
Resolver				F10				
SinCos® (Hiperface)				F11				
Encoder, Sine-cosine with/without hall				F12				
Interface:								
Step/direction / analogue input					110	T10	M00	
Positioning with inputs/outputs					111	T11	M00	
Positioning via I/Os or RS232 / RS485/USB					112			
Profibus DP V0/V1/V2 (12Mbaud)					120			
CANopen					121			
DeviceNet					122			
Ethernet Powerlink					130			
EtherCAT					131			
Profinet					132			
C3 powerPLmC (Multi-axis control)					C20		M00	
Technology functions:								
Positioning						T11		
Motion control programmable according to IEC61131-3						T30		
Motion control programmable according to IEC61131-3 \& electronic cam extension						T40		
Options:								
no additional supplement							M00	
Expansion 12 digital I/Os \& HEDA (Motionbus)							M10	
HEDA (Motionbus)							M11	
Expansion, 12 digital I/Os							M12	
Safety technology only C3M:								
Safe torque off	M		D6					S1
Extended safety technology	M		D6					S3

*external voltage supply for ventilator fan required. Available in two versions for single phase feed:
Standard: 220/240VAC: 140W, on request: 110/120VAC: 130W

8.2 Order code for mains module: PSUP

8.3 Order code for accessories

In this chapter you can read about:
Order code for feedback cables 339
Order Code braking resistors 339
Order code mains filter (C3S) 340
Order code capacitor module 340
Interface cable order code 340
Order Code input/output terminals (PIO). 341
Order note 342

Order Code connection set for Compax3S

The corresponding connection sets are furnished with the device.					/		
for C3S0xxV2	ZBH 02/01	ZBH	0	2	/	0	1
for C3S0xxV4 / S150V4 / S1xxV2	ZBH 02/02	ZBH	0	2	/	0	2
for C3S300V4	ZBH 02/03	ZBH	0	2	/	0	3

Order code for PSUP/Compax3M connection set

The corresponding connection sets are furnished with the device.							
for C3M050D6, C3M100D6, C3M150D6	ZBH 04/01	ZBH	0	4	/	0	1
for C3M300D6	ZBH 04/02	ZBH	0	4	/	0	2
for PSUP10	ZBH 04/03	ZBH	0	4	1	0	3
PSUP20, PSUP30	ZBH 04/04	ZBH	0	4	/	0	4

8.3.1. Order code for feedback cables

for resolver ${ }^{(2}$	for MH / SMH motors		REK	4	2			${ }^{(1}$
for resolver ${ }^{(2}$	for MH / SMH motors	(cable chain compatible)	REK	4	1	/	...	${ }^{1}$
for SinCos© - feedback ${ }^{(2}$	for MH / SMH motors	(cable chain compatible)	GBK	2	4	1		$\ldots{ }^{(1}$
for EnDat $2.1{ }^{(2}$	for MH / SMH motors	(cable chain compatible)	GBK	3	8	1	..	${ }^{1}$
for EnDat $2.2{ }^{(2}$	for MH / SMH motors	(cable chain compatible)	GBK	5	6	/	.	$\ldots{ }^{(1}$
Encoder - Compax3			GBK	2	3	/	...	${ }^{(1}$
for LXR linear motors		(cable chain compatible)	GBK	3	3	/ ${ }^{1}$
for BLMA linear motors		(cable chain compatible)	GBK	3	2	/	...	${ }^{(1}$

${ }^{(x}$ Note on cable (see on page 342)
Motor cable order code ${ }^{\text {(2 }}$

${ }^{(x}$ Note on cable (see on page 342)

8.3.2. Order Code braking resistors

Order Code braking resistors

8.3.3. Order code mains filter (C3S)

Order code mains filter Compax3S

Order code mains filter Compax3H

				1		
for C3H050V4	NFI	0	2	1	0	1
for C3H090V4	NFI	0	2	/	0	2
for C3H1xxV4	NFI	0	2	/	0	3

Order Code mains filter PSUP

for PSUP10	Reference axis combination $3 \times 480 \mathrm{~V} 25 \mathrm{~A}$ $6 \times 10 \mathrm{~m}$ motor cable length	NFI	0	3	/	0	1
for PSUP10	Reference axis combination $3 \times 480 \mathrm{~V} 25 \mathrm{~A}$ $6 \times 50 \mathrm{~m}$ motor cable length	NFI	0	3	/	0	2
for PSUP20 \& PSUP30	Reference axis combination $3 x 480 \mathrm{~V} 50 \mathrm{~A}$ $6 \times 50 \mathrm{~m}$ motor cable length	NFI	0	3	/	0	3

Order code for mains filters

for PSUP30	Mains filter	LCG-0055-0.45 mH
for PSUP30	Mains filter with UL approval	LCG-0055-0.45 mH-UL

Order code for motor output filter (for Compax3S, Compx3M >20m motor cable)

				1		
up to 6,3 A rated motor current	MDR	0	1	/	0	4
Up to 16 A rated motor current	MDR	0	1	/	0	1
Up to 30A A rated motor current	MDR	0	1	/	0	2

8.3.4. Order code capacitor module

Order code capacitor module

8.3.5. Interface cable order code

Order code for interface cables and connectors

${ }^{(x}$ Note on cable (see on page 342)

Order Code operating module

Order Code terminal block

for I/Os without luminous indicator	for X11, X12, X22	EAM	0	6	/	0	1
for I/Os with luminous indicator	for X12, X22	EAM	0	6	/	0	2

8.3.6. Order Code input/output terminals (PIO)

Order Code decentralized input terminals

PIO 2DI 24VDC 3.0ms	2-channel digital input terminal	PIO	4	0	0	
PIO 4DI 24VDC 3.0ms	4-channel digital input terminal	PIO	4	0	2	
PIO 8DI 24VDC 3.0ms	8-channel digital input terminal	PIO	4	3	0	
PIO 2AI DC $\pm 10 \mathrm{~V}$ differential input	2 channel analog input terminal ($\pm 10 \mathrm{~V}$ differential input)	PIO	4	5	6	
PIO 4AI 0-10VDC S.E.	4 channel analog input terminal (0-10 V signal voltage)	PIO	4	6	8	
PIO 2AI 0-20mA differential input	2-channel analog input terminal (0-20mA differential input)	PIO	4	8	0	

Order Code decentralized output terminals

Order Code CANopen Fieldbus Coupler

8.3.7. Order note

${ }^{11}$ Length code 1

Length $[\mathrm{m}]$	1.0	2.5	5.0	7.5	10.0	12.5	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0
Code	01	02	03	04	05	06	07	08	09	10	11	12	13	14

Other adaptation can be developed on request!

Example:

SSK01/09: Length 25 m
${ }^{(2}$ Colors according to DESINA
${ }^{13}$ with motor connector
${ }^{4}$ with cable eye for motor terminal box
${ }^{5}$ length code 2 for SSK28

Length [m]	0.17	0.25	0.5	1.0	3.0	5.0	10.0
Order code	23	20	21	01	22	03	05

${ }^{16}$ Order code: SSK27/nn/..

Length A (Pop - 1. Compax3) variable (the last two numbers according to the length code for cable, for example SSK27/nn/01)
Length B (1. Compax3-2. Compax3-... n. Compax3) fixed 50 cm (only if there is more than 1 Compax3, i.e. nn greater than 01)
Number n (the last two digits)

Examples include:

SSK27/05/.. for connecting from Pop to 5 Compax3.
SSK27/01/.. for connecting from Pop to one Compax3

MOK55 and MOK54 can also be used for linear motors LXR406, LXR412 and BLMA.
${ }^{7}$ sold by the meter: Length in meters (order in number of items)
${ }^{(x}$ Note on cable (see on page 342)

9. Compax3 Accessories

In this chapter you can read about:

Parker servo motors 343
EMC measures 346
Connections to the motor. 354
External braking resistors 359
Capacitor module C4 372
Operator control module BDM 373
EAM06: terminal block for inputs and outputs 373
Interface cable 376
Options M1x 381
Analog current inputs and voltage inputs (Option M21) 384
Profibus plug BUS08/01 386
9.1 Parker servo motors
In this chapter you can read about:
Direct drives 343
Rotary servo motors 345
9.1.1. Direct drives
In this chapter you can read about:
Transmitter systems for direct drives 344
Linear motors 345
Torque motors 345

9.1.1.1 Transmitter systems for direct drives

The Feedback option F12 makes it possible to operate linear motors as well as torque motors. Compax3 supports the following transmitter systems:

Special Feedback Systems	Option F12
Analog hall sensors	- Sine-Cosine signal (max. 5Vpp*; typical 1Vpp) 90° offset - U-V signal (max. 5Vpp*; typical 1Vpp) 120° offset.
Encoder (linear or rotary)	\bullet Sine-Cosine (max. 5Vpp*; typical 1Vpp) (max. 400 kHz) or - TTL (RS422) (max. 5MHz; track A or B) - Bypass function for encoder signals (limit frequency** 5 MHz , track A or B) with the following modes of commutation: - Automatic commutation (see on page 344) or - U, V, W or R, S, T commutation signals (NPN open collector) e.g. digital hall sensors, incremental encoders made by Hengstler (F series with electrical ordering variant 6)
EnDat*** with incremental (Sine Cosine) track	- EnDat 2.1 or EnDat 2.2 (Endat01, Endat02) feedback - linear or rotary - max. 400kHz Sine-Cosine
EnDat 2.2*** (fully digital)	- EnDat 2.2 (Endat01, Endat02) feedback - linear or rotary - max. Cable length: 25 m
EnDat2.1***(fully digital)	- EnDat 2.1 without incremental track - Supported types: EQI11xx, ECI11xx, ECI11x - max. Cable length: 90 m
Distance coded feedback systems	- Distance coding with 1 VSS interface - Distance coding with RS422 - Interface (Encoder)

*Max. differential input between SIN- (X13/7) and SIN+ (X13/8).
** Limit frequency $=1 \mathrm{MHz}$ for Compax3M (higher bandwidths on request)
*** Digital, bidirectional interface
The motor performs automatic commutation after:

- Power on,
- A configuration download or
- An IEC program download

The time duration (typically 5-10 sec) of automatic commutation can be optimized with the start current (see in the optimization display of the C3 ServoManager; given as a percentage of the reference current). Note that values that are too high will cause Error 0x73A6 to be triggered.
Typically the motor moves by 4% of the pitch length or, with rotary direct drives 4% of 360° /number of pole pairs - maximum 50%.

Note the following conditions for automatic commutation

- During automatic commutation the end limits are not monitored.
- Actively working load torques are not permitted during automatic commutation.
- Static friction deteriorates the effect of automatic commutation.
-With the exception of missing commutation information, the controller/motor combination is configured and ready for operation (parameters correctly assigned for the linear motor/drive). The transmitter and the direction of the field of rotation in effect must match.
- The auto-commutating function must be adapted to fit the mechanics if necessary during commissioning.

9.1.1.2 Linear motors

Parker offers you a number of systems of linear motor drives:

Linear motors	Feed force (continuous/dynamic)	Stroke length:
LMDT ironless linear servo motors:	$26 \ldots 1463 \mathrm{~N}$	almost any
LMI iron-cored linear servo motors:	$52 \ldots 6000 \mathrm{~N}$	$64 \ldots 999 \mathrm{~mm}$
LXR Series Linear Motors	$315 \mathrm{~N} / 1000 \mathrm{~N}$	up to 3 m
Linear motor module BLMA:	$605 \mathrm{~N} / 1720 \mathrm{~N}$	up to 6 m

9.1.1.3 Torque motors

Parker offers you an extensive range of torque motors that can be adapted to your application. Please contact us for information.
Additional information can be found on the Internet http://www.parker.com/eme in the direct drives section.

9.1.2. Rotary servo motors

Parker offers you an extensive range of servo motors that can be adapted to your application. Please contact us for information.
Additional information can be found on the Internet
http://www.parker.com/eme/smh
or on the DVD supplied in the documentations file.
Suitable servo motors for Compax3H are available on request!

9.2 EMC measures

In this chapter you can read about:

Mains filter. 346
Motor output filter. 351
Mains chokes 353

9.2.1. Mains filter

For radio disturbance suppression and for complying with the emission limit values for CE conform operationwe offer mains filters:
Observe the maximum permitted length of the connection between the mains filter and the device:

- unshielded <0.5m;
\bullet shielded: <5m (fully shielded on ground e.g. ground of control cabinet)

Order code mains filter Compax3S

Order Code mains filter PSUP

for PSUP10	Reference axis combination $3 \times 480 \mathrm{~V} 25 \mathrm{~A}$ $6 \times 10 \mathrm{~m}$ motor cable length	NFI	0	3		0	1
for PSUP10	Reference axis combination $3 \times 480 \mathrm{~V} 25 \mathrm{~A}$ $6 \times 50 \mathrm{~m}$ motor cable length	NFI	0	3	/	0	2
for PSUP20 \& PSUP30	Reference axis combination $3 x 480 \mathrm{~V} 50 \mathrm{~A}$ $6 \times 50 \mathrm{~m}$ motor cable length	NFI	0	3	/	0	3

Order code for mains filters

for PSUP30	Mains filter	LCG-0055-0.45 mH
for PSUP30	Mains filter with UL approval	

Order code mains filter Compax3H

for C3H050V4	NFI	0	2	1	0	1
for C3H090V4	NFI	0	2	/	0	2
for C3H1xxV4	NFI	0	2	/	0	3

9.2.1.1 Mains filter NFI01/01

for Compax3 S025 V2 and Compax3 S063 V2
Dimensional drawing:

9.2.1.2 Mains filter NFIO1/02

for Compax3 S0xx V4, Compax3 S150 V4 and Compax3 S1xx V2
Dimensional drawing:

9.2.1.3 Mains filter for NFIO1/03

for Compax3 S300
Dimensional drawing:

Stated in mm

9.2.1.4 Mains filter NFIO2/0x

Filter for mounting below theCompax3 Hxxx V4 housing
Dimensional drawing:

	Filter type	Dimensions				Fixing Centers			Distances		Weight	Groundi ng clamp	Connectio n clamp
		W	H2	H	D	W1	H1	D1	BFU	HFU			
		mm				mm			mm		kg		
C3H050V4	NFI02/01	233	515	456	70	186	495	40	150	440	4.3	M6	$16 \mathrm{~mm}^{2}$
C3H090V4	NFI02/02	249	715	649	95	210	695	40	150	630	8.5	M8	$50 \mathrm{~mm}^{2}$
C3H1xxV4	NFI02/03	249	830	719	110				150	700	15.0	M10	$95 \mathrm{~mm}^{2}$

9.2.1.5 Mains filter NFI03/01\& NFIO3/03

for PSUP10D6 and PSUP20D6

Dimensional drawing:

Bottom view

Top view

Filter type						Weight	GND(I)	Connection clamp				
	A	B	C	D	I	F	G	H		kg		
NFI03/01	240	50	85	270	0.8	30	255	5.4		1.5	M5	$10 \mathrm{~mm}^{2}$
NFI03/03	220	85	90	250	1.0	60	235	5.4		2.4	M6	$16 \mathrm{~mm}^{2}$

[^5]
9.2.1.6 Mains filter NFIO3/02

for PSUP10D6

Dimensional drawing:

9.2.2. Motor output filter

We offer motor output filters for disturbance suppression when the motor connecting cables are long (>20m):

Order code for motor output filter (for Compax3S, Compx3M >20m motor cable)

Larger motor output filters are available on request!
In this chapter you can read about:
Motor output filter MDR01/04 .. 351
Motor output filter MDR01/01 .. 351
Motor output filter MDR01/02 ... 352
Wiring of the motor output filter.. 352

9.2.2.1 Motor output filter MDR01/04

up to 6.3 A nominal motor current $(3.6 \mathrm{mH})$
Dimensional drawing:

Stated in mm

9.2.2.2 Motor output filter MDR01/01

Up to 16 A nominal motor current (2 mH)

Dimensional drawing:

Stated in mm

9.2.2.3 Motor output filter MDR01/02

up to 30A nominal motor current (1.1mH)
Dimensional drawing:

Weight: 5.8 kg
9.2.2.4 Wiring of the motor output filter

9.2.3. Mains chokes

Mains filters serve for reducing the low-frequency interferences on the mains side.

9.2.3.1 Mains filter for PSUP30

Required mains filter for the PSUP30: $0.45 \mathrm{mH} / 55 \mathrm{~A}$
We offer the following mains filters:
\bullet LCG-0055-0.45 mH (WxDxH: $180 \mathrm{~mm} \times 140 \mathrm{~mm} \times 157 \mathrm{~mm} ; 10 \mathrm{~kg}$)
-LCG-0055-0.45 mH-UL (with UL approval) (WxDxH: $180 \mathrm{~mm} \times 170 \mathrm{~mm} \times$ $157 \mathrm{~mm} ; 15 \mathrm{~kg}$)

Dimensional drawing: LCG-0055-0.45 mH

Dimensional drawing: LCG-0055-0.45 mH-UL

9.3 Connections to the motor

Under the designation "REK.." (resolver cables) and "MOK.."(motor cables) we can deliver motor connecting cables in various lengths to order. If you wish to make up your own cables, please consult the cable plans shown below:

Motor cable order code ${ }^{(2)}$

[^6]
9.3.1 Resolver cable

REK42/.

Lötseite solder side

NC- 3
NC- 4
NC- 5
NC- 6
SIN+

The same cable (with changed conductor coloring) is available under the designation REK41/.. in a version which is suitable for cable chain systems. You can find the length code in the Chapter Order Code Accessories (see on page 338).

9.3.2. SinCos© cable GBK24/..: Cable chain compatible

Pin 1

Lötseite / solder side Crimpseite / crimp side
SIN+
SIN-
COS+
COS-
+485
-485
K1
K2
+V
GND
NC- 4 Schirm auf Schirmanbindungselement
NC- 5 Screen at screen contact
NC- 6
NC- 14
NC- 15
NC- 17

You can find the length code in the Chapter Order Code Accessories (see on page 338).

9.3.3. EnDat cable

GBK38/..: (cable chain compatible) for EnDat2.1

GBK56/..: (cable chain compatible) for EnDat2.2 (cable plan on request) You will find the length code in the accessories order code (see on page 338).

9.3.4. Motor cable

Cross-section / max. permanent load	Motor connector SMH motors MH56, MH70, MH105	Motor terminal box MH145, MH205		
	standard	cable chain compatible	standard	cable chain compatible
$1.5 \mathrm{~mm}^{2}$ / up to 13.8 A	MOK55	MOK54	MOK60	MOK63
$2.5 \mathrm{~mm}^{2}$ / up to 18.9 A	MOK56	MOK57	MOK59	MOK64
$6 \mathrm{~mm}^{2}$ / up to 32.3 A	-	-	-	MOK61
$10 \mathrm{~mm}^{2}$ / up to 47.3 A		--	-	MOK62

9.3.4.1 Connection of terminal box MH145 \& MH205

Terminal	Assignment
A	Phase U
B	Phase V
C	Phase W
E	Protective earth terminal
F	Brake (+ red for MH205)
G	Brake (- blue for MH205)

Additional designations can be found on the connection cable clamping board motor (internal).

9.3.5. Encoder cable

GBK23/..: Connection Compax3 - Encoder

Compax3 (X11)
Encoder
Lötseite solder side

$-\mathrm{C} A$
 Lötseite / Crimpseite

Schirm auf Schirmanbindungselement Screen at screen contact

NC- U NC- C
NC- V NC- \mathbf{F}
NC- \mathbf{W} NC- J
NC- X NC- L
NC- Y NC- N NC- Z

NC- R
NC- S
NC- ${ }^{-1}$

You can find the length code in the Order Code Accessories (see on page 338)

9.4 External braking resistors

Danger!

Hazards when handling ballast resistors!

Housing temperature up to $200^{\circ} \mathrm{C}$!
Dangerous voltage!
The device may be operated only in the mounted state!
The external braking resistors must be installed such that protection against contact is ensured (IP20).
Install the connecting leads at the bottom.
The braking resistors must be grounded.
We recommend to use a thrust washer for the BRM13 and BRM14.
Observe the instructions on the resistors (warning plate).

Please note that the length of the supply cable must not exceed 2 m !
In this chapter you can read about:
Permissible braking pulse powers of the braking resistors .360
Dimensions of the braking resistors . .369

Ballast resistors Compax3

Ballast resistor (see on page 359)	Device	Nominal Power
BRM08/01 (100 Ω)	Compax3S025V2 Compax3S015V4 Compax3S038V4	60 W
BRM05/01 (56 Ω)	Compax3S063V2 Compax3S075V4	180 W
BRM05/02 (56 Ω)	Compax3S075V4	570 W
BRM10/01 (47 Ω)	Compax3S150V4	570 W
BRM10/02 (47 Ω)	Compax3S150V4	1500 kW
BRM04/01 (15 Ω)	Compax3S150V2 Compax3S300V4 PSUP20D6	570 W
BRM04/02 (15 Ω)	Compax3S150V2 Compax3S300V4 PSUP20D6	740 W
BRM04/03 (15 Ω)	Compax3S300V4 PSUP20D6	1500 W
BRM09/01 (22 Ω)	Compax3S100V2	570 W
BRM11/01 (27 Ω)	Compax3H0xxV4	3500 W
BRM13/01 (30 Ω)	PSUP10D6 PSUP20D6** PSUP30D6**	500 W
BRM14/01 (15 Ω)	$\begin{aligned} & \hline \text { PSUP10D6* } \\ & \text { PSUP20D6 } \\ & \text { PSUP30D6 } \end{aligned}$	500 W
BRM12/01 (18 Ω)	Compax3H1xxV4 PSUP30D6	4500 W

*for PSUP10D6 $2 \times 15 \Omega$ in series
**for PSUP20D6 and PSUP30D6 2x30 2 parallel
9.4.1.

Permissible braking pulse powers of the braking resistors
In this chapter you can read about:
Calculation of the BRM cooling time .. 360
Permissible braking pulse power: BRM08/01 with C3S015V4 / C3S038V4.................... 361
Permissible braking pulse power: BRM08/01 with C3S025V2....................................... 362
Permissible braking pulse power: BRM09/01 with C3S100V2...................................... 362
Permissible braking pulse power: BRM10/01 with C3S150V4.. 363
Permissible braking pulse power: BRM10/02 with C3S150V4....................................... 363
Permissible braking pulse power: BRM05/01 with C3S063V2....................................... 364
Permissible braking pulse power: BRM05/01 with C3S075V4....................................... 364
Permissible braking pulse power: BRM05/02 with C3S075V4...................................... 365
Permissible braking pulse power: BRM04/01 with C3S150V2....................................... 365
Permissible braking pulse power: BRM04/01 with C3S300V4....................................... 366
Permissible braking pulse power: BRM04/02 with C3S150V2....................................... 366
Permissible braking pulse power: BRM04/02 with C3S300V4....................................... 367
Permissible braking pulse power: BRM04/03 with C3S300V4...................................... 367
Permissible braking pulse power: BRM11/01 with C3H0xxV4 368
Permissible braking pulse power: BRM12/01 with C3H1xxV4 368
Permissible braking pulse power: BRM13/01 with PSUP10D6..................................... 369
Permissible braking pulse power: BRM14/01 with PSUP10D6...................................... 369
The diagrams show the permissible braking pulse powers of the braking resistors in operation with the assigned Compax3.

9.4.1.1 Calculation of the BRM cooling time

F = Factor
Cooling time $=F^{*}$ braking time
Example 1: For a braking time of 1 s , a braking power of 1 kW is required. The Diagram shows the following:
The required values can be found in the range between characteristic $F=0.5$ and $F=1$. In order to achieve operating safety, please select the higher factor, this means that the required cooling time is 1 s .
F * Braking time
1 * 1s = 1s

Example 2: For a braking time of 0.5 s , a braking power of 3 kW is required. The Diagram shows the following:
The required values can be found in the range between characteristic $F=2$ and F $=5$. In order to achieve operating safety, please select the higher factor, this means that the required cooling time is 2.5 s .

```
F * Braking = cooling time
            time
5 * 0.5s = 2.5s
```


9.4.1.2 Permissible braking pulse power: BRM08/01 with C3S015V4 / C3S038V4

9.4.1.3 Permissible braking pulse power: BRM08/01 with C3S025V2

9.4.1.4 Permissible braking pulse power: BRM09/01 with C3S100V2

9.4.1.5 Permissible braking pulse power: BRM10/01 with C3S150V4

9.4.1.6 Permissible braking pulse power: BRM10/02 with C3S150V4

9.4.1.7 Permissible braking pulse power: BRM05/01 with C3S063V2

9.4.1.8 Permissible braking pulse power: BRM05/01 with C3S075V4

9.4.1.9 Permissible braking pulse power: BRM05/02 with C3S075V4

$\begin{array}{ll}\text { 9.4.1.10 } & \begin{array}{l}\text { Permissible braking pulse power: BRM04/01 with } \\ \text { C3S150V2 }\end{array}\end{array}$

9.4.1.11 Permissible braking pulse power: BRM04/01 with C3S300V4

9.4.1.12 Permissible braking pulse power: BRM04/02 with C3S150V2

9.4.1.13 Permissible braking pulse power: BRM04/02 with C3S300V4

9.4.1.14 Permissible braking pulse power: BRM04/03 with C3S300V4

9.4.1.15 Permissible braking pulse power: BRM11/01 with C3H0xxV4

9.4.1.16 Permissible braking pulse power: BRM12/01 with

 C3H1xxV4

9.4.1.17 Permissible braking pulse power: BRM13/01 with PSUP10D6

on request

9.4.1.18 Permissible braking pulse power: BRM14/01 with PSUP10D6

on request

9.4.2. Dimensions of the braking resistors

In this chapter you can read about:
BRM8/01braking resistors.. 369

Braking resistor BRM5/02, BRM9/01 \& BRM10/01 ... 370
Braking resistor BRM4/0x and BRM10/02... 370

Ballast resistor BRM13/01 \& BRM14/01 .. 371
9.4.2.1 BRM8/01braking resistors

Dimensional drawing:

Stated in mm

9.4.2.2 BRM5/01 braking resistor

Dimensional drawing:

Stated in mm
9.4.2.3 Braking resistor BRM5/02, BRM9/01 \& BRM10/01

Dimensional drawing:

9.4.2.4 Braking resistor BRM4/0x and BRM10/02

Dimensional drawing:

1: thermal overcurrent relay

		BRM4/01	BRM4/02	BRM4/03 \& BRM10/02
A	mm	250	300	540
B	mm	330	380	620
C	mm	64	64	64

9.4.2.5 Braking resistor BRM11/01 \& BRM12/01

Dimensional drawing:

		BRM11/01		
330				
W	mm	295		
W1	mm	270		
W2	mm	260		
H	mm	6.0	7.0	
Weight	kg			

9.4.2.6 Ballast resistor BRM13/01 \& BRM14/01

Dimensional drawing:

9.5 Capacitor module C4

Order code capacitor module

for C3S300V4	1100~F	Module	C4

Technical Data

Type	Capacity	Cable length
Module C4	$1100 \mu \mathrm{~F}$	$\sim 30 \mathrm{~cm}$

Module C4	A	B	C	C1	D	I	F	G	H
	mm								
	430	190	90	120	370	15	18	30	$\varnothing 6$

9.6 Operator control module BDM

Order Code operating module

Flexible service and maintenance

Functions:

- Mobile or stationary handling: can remain on the unit for display and diagnostic purposes, or can be plugged into any unit.
- Can be plugged in while in operation
- Power supply via Compax3 servo control
- Display with 2 times 16 places.
- Menu-driven operation using 4 keys.
- Displays and changing of values.
-Display of Compax3 messages.
- Duplication of device properties and IEC61131-3 program to another Compax3 with identical hardware.
- Additional information can be found int he BDM manual This can be found on the Compax3 CD or on our Homepage: BDM-manual (http://divapps.parker.com/divapps/EME/EME/Literature_List/dokumentatio nen/BDM.pdf).

9.7 EAM06: terminal block for inputs and outputs

Order Code terminal block

The terminal block EAM06/.. can be used to route the Compax3 plug connector X11 or X12 for further wiring to a terminal strip and to a Sub-D plug connector.
Via a supporting rail (Design: \square or \longleftarrow) the terminal unit can be attached to a mounting rail in the switch cabinet.
EAM06/ is available in 2 variants:
-EAM06/01: Terminal block for X11, X12, X22 without luminous indicator
-EAM06/02: Terminal block for X12, X22 with luminous indicator
Corresponding connecting cables EAM06 - Compax3 are available:

- from X11 - EAM06/01: SSK23/..
- from X12, X22 - EAM06/xx: SSK24/..

EAM6/01: Terminal block without luminous indicator for X11, X12 or X22

Figure similar
Width: 67.5 mm
EAM6/02: Terminal block with luminous indicator for X12, X22

Figure similar
Width: 67.5 mm

Cable plan SSK23/..: X11 to EAM 06/01

Cable plan SSK24/..: X12 to EAM 06/xx

9.8 Interface cable

In this chapter you can read about:

RS232 - cable / SSK1 ... 376
RS485 cable to Pop / SSK27 ... 377
I/O-interface X12 / X22 / SSK22 ... 378
Ref X11 / SSK21 .. 378
Encoder coupling of 2 Compax3 axes / SSK29... 379
Modem cable SSK31 ... 380
Adapter cable SSK32/20 ... 380
Order code for interface cables and connectors

					/		
PC - Compax3 (RS232)		SSK	0	1	1		${ }^{1}$
PC - PSUP (USB)		SSK	3	3	1		
on X11 (Ref/Analog) and X13 with C3F001D2	with flying leads	SSK	2	1	1		... ${ }^{1}$
on X12 / X22 (digital I/Os)	with flying leads	SSK	2	2	1		${ }^{1}$
on X11 (Ref /Analog)	for I/O terminal block	SSK	2	3	1		... ${ }^{1}$
on X12 / X22 (digital I/Os)	for I/O terminal block	SSK	2	4	1 ${ }^{1}$
$\mathrm{PC} \Leftrightarrow \mathrm{POP}$ (RS232)		SSK	2	5	/ ${ }^{1}$
Compax3 \Leftrightarrow POP (RS485) for several C 3 H on request		SSK	2	7	1	../	. ${ }^{6}$
Compax3 HEDA \Leftrightarrow Compax3 HEDA or PC \Leftrightarrow C3powerPLmC Compax3 I30 \Leftrightarrow Compax3 I30 or C3M-multi-axis communication Profinet, EtherCAT, Ethernet Powerlink		SSK	2	8	/	../	$\ldots{ }^{(5}$
Compax3 X11 \Leftrightarrow Compax3 X11 (encoder coupling of 2 axes)		SSK	2	9	1 ${ }^{1}$
Compax3 X10 \Leftrightarrow Modem		SSK	3	1	1	\ldots	
Compax3H adapter cable \Leftrightarrow SSK01 (length 15cm, delivered with	the device)	SSK	3	2	/	2	0
Compax3H X10 RS232 connection control \Leftrightarrow Programming interf	ace (delivered with the device)	VBK	1	7	1	0	1
Bus terminal connector (for the 1st and last Compax3 in the HEDA	A Bus/or multi-axis system)	BUS	0	7	/	0	1
Profibus cable ${ }^{(2}$	non prefabricated	SSL	0	1	 ${ }^{7}$
Profibus connector		BUS	0	8	/	0	1
CAN bus cable ${ }^{(2}$	non prefabricated	SSL	0	2	 ${ }^{7}$
CAN bus connector		BUS	1	0	/	0	1

${ }^{(x}$ Note on cable (see on page 342)

9.8.1. RS232 - cable / SSK1

SSK1/..

You will find the length code in the accessories order code (see on page 338).

9.8.2. RS485 cable to Pop / SSK27

SSK27: Connection Pop - Compax3 - Compax 3-...

$\mathrm{R} 21=220$ Ohm
${ }^{16}$ Order code: SSK27/nn/..
Length A (Pop-1. Compax3) variable (the last two numbers according to the length code for cable, for example SSK27/nn/01)
Length B (1. Compax3-2. Compax3-...-n. Compax3) fixed 50 cm (only if there is more than 1 Compax3, i.e. nn greater than 01)
Number n (the last two digits)

Examples include:

SSK27/05/.. for connecting from Pop to 5 Compax3.
SSK27/01/.. for connecting from Pop to one Compax3

9.8.3.

 I/O-interface X12 / X22 / SSK22
SSK22/..: Cable for X12 | X22 with flying leads

You will find the length code in the accessories order code (see on page 338).

9.8.4. Ref X11 / SSK21

SSK21/.:: Cable for X11 with flying leads

You will find the length code in the accessories order code (see on page 338).

9.8.5. Encoder coupling of 2 Compax3 axes / SSK29

SSK29/..: Cable from Compax3 X11 to Compax3 X11

$$
\begin{aligned}
& \text { von Compax3 (X11) } \\
& \text { from Compax3 (X11) }
\end{aligned}
$$

zu Compax3 (X11)
to Compax3 (X11)
Lötseite solder side

Lötseite solder side

Schirm großflächig auf Gehäuse legen
Place sheath over large area of housing

Schirm großflächig auf Gehäuse legen Place sheath over large area of housing

You will find the length code in the accessories order code (see on page 338).
Compax3 HEDA \Leftrightarrow Compax3 HEDA or PC \Leftrightarrow C3powerPLmC Compax3 I30 \Leftrightarrow Compax3 I30 or C3M-multi axis communication

Profinet, EtherCAT, Ethernet Powerlink

Layout of SSK28:

[1]

9.8.6. Modem cable SSK31

SSK31/.

You can find the length code in the Order Code Accessories (see on page 338)

9.8.7. Adapter cable SSK32/20

9.9 Options M1x

In this chapter you can read about:
Digital input/output option M12 (I12) ... 381
HEDA (motion bus) - Option M11 .. 382
Option M10 = HEDA (M11) \& I/Os (M12)... 383

9.9.1. Digital input/output option M12 (I12)

Option M12 (or M10: with HEDA) offers 8 digital 24 V inputs and 4 digital outputs on X22.

9.9.1.1 Assignment of the $\mathbf{X} 22$ connector

$\begin{array}{\|l\|} \hline \text { Pin } \\ \text { X22/ } \end{array}$	Input/Output	I/O /X22 High density/Sub D	Configurable in the C3 ServoManager *:
1	n.c.	factory use	
2	O0/I0	Output 0 / Input 0 - adjustable	*
3	01/I1	Output 1 / Input 1 - adjustable	
4	O2/I2	Output 2 / Input 2 - adjustable	
5	O3/13	Output 3 / Input 3 - adjustable	
6	O4/14	Output 4 / Input 4 - adjustable	*
7	O5/15	Output 5 / Input 5 - adjustable	
8	O6/16	Output 6 / Input 6 - adjustable	
9	07/17	Output 7 / Input 7 - adjustable	
10	O8/18	Output 8 / Input 8 - adjustable	*
11	I	24 VDC power supply	(not 24VDC)
12	O9/19	Output 9 / Input 9 - adjustable	
13	010/110	Output 10 / Input 10 - adjustable	
14	O11/111	Output 11 / Input 11 - adjustable	
15	I	GND24V	

* Configurable as input or output in the wizard window "I/O assignment" in groups of 4.

All inputs and outputs do have 24 V level.
Maximum load on an output: 100mA
Maximum capacitive load: 50nF (max. 4 Compax3 inputs)
Caution! The 24 VDC power supply (X22/11) must be supplied from an external source and must be protected by a 1.2 A delayed fuse!

9.9.1.2 Connections of digital inputs and outputs M10 \& M12

Input wiring of digital inputs
SPS/PLC

Compax 3

Output wiring of digital outputs
Compax3

The outputs are short circuit proof; a short circuit generates an error.
F1: Quick action electronic fuse; can be reset by switching the 24 VDC supply off and on again.

9.9.2.
 HEDA (motion bus) - Option M11

	RJ45 (X20)	RJ45 (X21)
Pin	HEDA in	HEDA out
1	Rx	Tx
2	Rx	Tx/
3	Lx	Lx
4	-	factory use
5	-	factory use
6	Lx $/$	Lx $/$
7	-	factory use
8	-	factory use

Function of the HEDA LEDs

Green LED (left)

HEDA module energized

Red LED (right)

Error in the receive area
Possible causes:

- at the Master
- no slave sending back
-Wrong cabling
-Terminal plug is missing
- several masters are sending in the same slot
- at the slave
- several masters in the system
- no master active
- Terminal plug is missing
- no transmission from one or several receive slots (neither by the master nor by another slave)

HEDA-wiring:

HEDA-Master

Layout of SSK28 (see on page 340, see on page 379)

Design of the HEDA bus terminator BUS 07/01:

Jumpers: 1-7, 2-8, 3-4, 5-6

Function of the HEDA LEDs

Green LED (left)

HEDA module energized

Red LED (right)

Error in the receive area
Possible causes:

- at the Master
- no slave sending back
-Wrong cabling
- Terminal plug is missing
- several masters are sending in the same slot
- at the slave
- several masters in the system
- no master active
-Terminal plug is missing
- no transmission from one or several receive slots (neither by the master nor by another slave)

9.9.3. Option M10 = HEDA (M11) \& I/Os (M12)

The M10 option includes the M12 input/output option and the HEDA M11 option.

9.10 Analog current inputs and voltage inputs (Option M21)

With the Option M21 three analog current voltage \& voltage inputs ($0 . . .20 \mathrm{~mA}$) and ($-10 \ldots+10 \mathrm{~V}$) are available
In this chapter you can read about:
Connector assignment Option M21 X20
Connector assignment Option M21 X21

9.10.1. Connector assignment Option M21 X20

X20: Current inputs ($0 . . .20 \mathrm{~mA}$)

Pin	Name	Function	Internal input channel
1	+24Vout	Sensor supply 0 (output) ${ }^{1)}$	AIO
2	in0+	Current input $0+(0 \ldots 20 \mathrm{~mA}$)	
3	GND	Sensor supply 0 (output) ${ }^{1)}$	
4	in0-	Current input 0- (0... 20 mA)	
5	+24Vout	Sensor supply 1 (output) 24 VDC out ${ }^{1)}$	AI1
6	iin1+	Current input 1 + (0 ... 20 mA)	
7	GND	Sensor supply 1 (output) ${ }^{1)}$	
8	in1-	Current input 1 - (0 ... 20 mA)	
9	+24Vout	Sensor supply 2 (output) ${ }^{11}$	AI2
10	in2+	Current input 2 + (0 .. 20 mA)	
11	GND	Sensor supply 2 (output) ${ }^{1)}$	
12	in2-	Current input 2 - (0 ... 20 mA)	
13	+24Vin	Sensor supply input 24 VDC in	Supply for pin $1 / 3,5 / 7$ and 9/11. ${ }^{2)}$
14	GND in	Sensor supply input	
15	Shield	Shield connection	
16	Shield	Shield connection	

Input resistor 250Ω
${ }^{1)}$ For sensor supply - optional; the differential inputs may also be used. Supply takes also place via X20 pin 13 and 14.
${ }^{2)}$ Only required if these voltage outputs are used for the sensor supply

9.10.1.1 Wiring of the analog current inputs

 Input INOCompax3

IN0 to IN3 do have the same wiring!
Pin assignment X1

9.10.2. Connector assignment Option M21 X21

X21: Voltage inputs (-10 V... +10 V)

Pin	Name	Function	Internal input channel
1	+24Vout	Sensor supply 3 (output) ${ }^{1)}$	AIO
2	in3 +	Voltage input $3+(-10 \mathrm{~V} . . .+10 \mathrm{~V})$	
3	GND	Sensor supply 3 (output) ${ }^{11}$	
4	in3-	Voltage input 3 - (-10... +10 V)	
5	24 VDC out	Sensor supply 4 (output) ${ }^{1)}$	AI1
6	in4 +	Voltage input 4 + (-10 V... +10 V)	
7	GND	Sensor supply 4 (output) ${ }^{11}$	
8	in4 -	Voltage input 4 - (-10... +10 V)	
9	24 VDC out	Sensor supply 5 (output) ${ }^{1)}$	AI2
10	in5 +	Voltage input $5+(-10 \mathrm{~V} . . .+10 \mathrm{~V})$	
11	GND	Sensor supply 5 (output) ${ }^{11}$	
12	in5 -	Voltage input 5-(-10... +10 V)	

Input resistor $554 \mathrm{k} \Omega$
${ }^{1)}$ For sensor supply - optional; the differential inputs may also be used. Supply takes also place via X20 pin 13 and 14.

9.10.2.1 Wiring of the analog voltage inputs

Input IN4
Compax3

IN4 (X21/6 und X21/8) und IN5 (X21/10 und $X 21 / 12$) do have the same wiring!

9.11 Profibus plug BUS08/01

We offer a Profibus plug and special cable as sold be the meter for Profibus wiring: - Profibus cable: SSL02/.. not prefabricated (color according to DESINA).

- Profibus plug: BUS8/01 with 2 cable inputs (for one incoming A1, B1 and one continuing Profibus cable- A2, B2-) and screw terminals as well as a switch for activating the terminal resistor.
The terminal resistor must be activated on the first and on the last node (= switch setting ON).

10. Technical Data

Mains connection Compax3S0xxV2 1AC

Controller type	S025V2	S063V2
Continuous working voltage	Single phase 230VAC/240VAC $80-253 \mathrm{VAC} / 50-60 \mathrm{~Hz}$	
Receiver current consumption	6 Arms	13Arms
Maximum fuse rating per device	10 A (automatic circuit breaker K)	16A (automatic circuit breaker K)

Mains connection Compax3S1xxV2 3AC

Controller type	S100V2	
Supply voltage	Three phase $3^{*} 230 \mathrm{VAC} / 240 \mathrm{VAC}$	
	$80-253 \mathrm{VAC} / 50-60 \mathrm{~Hz}$	
Input current	10 Arms	13 Arms
Maximum fuse rating per device	16 A	20 A
	MCB miniature circuit breaker, K characteristic	

Mains connection Compax3SxxxV4 3AC

Controller type	S015V4	S038V4	S075V4	S150V4	S300V4
Continuous working voltage	Three phase $3^{*} 400 \mathrm{VAC} / 480 \mathrm{VAC}$ 80-528VAC / 50-60Hz				
Receiver current consumption	3Aeff	6Arms	10Arms	16Arms	22Arms
Maximum fuse rating per device	6A	10A	16A	20A	25A
	MCB miniature circuit breaker, K characteristic				D*

Mains connection PSUP10D6

Device type PSUP10	230V	400V	480 V
Supply voltage	$230 \mathrm{VAC} \pm 10 \%$	$400 \mathrm{VAC} \pm 10 \%$	$480 \mathrm{VAC} \pm 10 \%$
$50-60 \mathrm{~Hz}$	$50-60 \mathrm{~Hz}$	$50-60 \mathrm{~Hz}$	
Rated voltage	3 AC 230 V	3 AC 400 V	3 AC 480 V
Input current	22 Arms	22 Arms	18 Arms
Output Voltage	$325 \mathrm{VDC} \pm 10 \%$	$565 \mathrm{VDC} \pm 10 \%$	$680 \mathrm{VDC} \pm 10 \%$
Output power	6 kW	10 kW	10 kW
Pulse power (<5s)	12 kW	20 kW	20 kW
Heat dissipation	60 W	60 W	60 W
Maximum fuse rating per device	Measure for line and device protection: MCB miniature circuit breaker (K characteristic) 25A in accordance with UL category DIVQ Recommendation: (ABB) S203UP-K25 (480VAC)		

Mains connection PSUP20D6

Device type PSUP20	230V	400V	480 V
Supply voltage	$230 \mathrm{VAC} \pm 10 \%$ $50-60 \mathrm{~Hz}$	$400 \mathrm{VAC} \pm 10 \%$ $50-60 \mathrm{~Hz}$	$480 \mathrm{VAC} \pm 10 \%$ $50-60 \mathrm{~Hz}$
Rated voltage	3 AC 230 V	$3 \mathrm{AC} \mathrm{400V}$	3 AC 480 V
Input current	44 Arms	44 Arms	35 Arms
Output Voltage	$325 \mathrm{VDC} \pm 10 \%$	$565 \mathrm{VDC} \pm 10 \%$	$680 \mathrm{VDC} \pm 10 \%$
Output power	12 kW	20 kW	20 kW
Pulse power (<5s)	24 kW	40 kW	40 kW
Heat dissipation	120 W	120 W	120 W
Maximum fuse rating per device 2 special purpose fuses in line are required	Cable protection measure: MCB (K characteristic) with a rating of 50A / 4xxVAC (depending on the input voltage) Recommendation: (ABB) S203U-K50 (440VAC) Device protection measure: Circuit breakers 80A / 700VAC per supply leg in accordance with UL category JFHR2 Requirement: Bussmann 170M1366 or 170M1566D		

PSUP30D6 Mains connection

Device type PSUP30	230V	400V	480 V						
Supply voltage	$230 \mathrm{VAC} \pm 10 \%$	$400 \mathrm{VAC} \pm 10 \%$							
$50-60 \mathrm{~Hz}$	$480 \mathrm{VAC} \pm 10 \%$								
Rated voltage	3 AC 230 V	3 AC 400 V	$30-60 \mathrm{~Hz}$	$	$	Input current	50 Arms	50 Arms	42 Arms
:---	:---	:---	:---						
Output Voltage	$325 \mathrm{VDC} \pm 10 \%$	$565 \mathrm{VDC} \pm 10 \%$	$680 \mathrm{VDC} \pm 10 \%$						
Output power	17 kW	30 kW	30 kW						
Pulse power (<5s)	34 kW	60 kW	60 kW						
Heat dissipation	140 W	140 W	140 W						
Maximum fuse rating per device 2 special purpose fuses in line are required	Cable protection measure: MCB (K characteristic) with a rating of $63 \mathrm{~A} / 4 \times x \mathrm{VAC}$ (depending on the input voltage) Recommendation: (ABB) S203U-K63 (440VAC) Device protection measure: Circuit breakers 125A / 700VAC per supply leg in accordance with UL category JFHR2 Requirement: Bussmann 170M1368 or 170M1568D								

Mains connection Compax3HxxxV4 3*400VAC

Device type Compax3	H050V4	H090V4	H125V4	H155V4
Continuous working voltage	Three-phase 3*400VAC 350-528VAC / 50-60Hz			
Receiver current consumption	66 Arms	95 Arms	143Arms	164Arms
Output current	50 Arms	90 Arms	125Arms	155Arms
Maximum input fuse rating per device	80A	100A	160A	200A
Recommended line protection in accordance with UL	JDDZ Class K5 or H JDRX Class H			

Mains connection Compax3HxxxV4 3*480VAC

Device type Compax3	H050V4	H090V4	H125V4	H155V4
Continuous working voltage	Three-phase 3*480VAC $350-528 V A C ~ / ~ 50-60 H z ~$			
Receiver current consumption	54 Arms	82Arms	118Arms	140Arms
Output current	43 Arms	85Arms	110Arms	132Arms
Maximum input fuse rating per device	80 A	100A	160 A	200A
Recommended line protection in accordance with UL	JDDZ Class K5 or H JDRX Class H			

Control voltage 24VDC Compax3S and Compax3H

Controller type	Compax3
Voltage range	$21-27 \mathrm{VDC}$
Current drain of the device	0.8 A
Total current drain	$0.8 \mathrm{~A}+$ Total load of the digital outputs + current for the motor holding brake
Ripple	0.5 Vpp
Requirement according to safe extra low voltage (SELV)	yes
Short-circuit proof	conditional (internally protected with 3.15AT)

Control voltage 24 VDC PSUP

Device type	PSUP
Voltage range	$21-27 \mathrm{VDC}$
Ripple	0.5 Vpp
Requirement according to safe extra low voltage (SELV)	yes (class 2 mains module)
Current drain PSUP	PSUP10: 0.2A PSUP20 / PSUP30: 0.3A
	C3M050D6: 0.85 3M100D6: 0.85A Clectric current drain Compax3M C3M150D6: 0.85A C3M300D6: 1.0 A + Total load of the digital outputs + current for the motor holding brake

Output data Compax3S0xx at 1*230VAC/240VAC

Controller type	S025V2	S063V2
Output voltage	$3 \times 0-240 \mathrm{~V}$	$3 \times 0-240 \mathrm{~V}$
Nominal output current	2.5 Arms	6.3 Arms
Pulse current for 5s	5.5 Arms	12.6 Arms
Power	1 kVA	2.5 kVA
Switching frequency	16 kHz	16 kHz
Power loss for In	30 W	60 W

Output data Compax3S1xx at 3*230VAC/240VAC

Controller type	S100V2	S150V2
Output voltage	$3 \times 0-240 \mathrm{~V}$	$3 \times 0-240 \mathrm{~V}$
Nominal output current	10 Arms	15 Arms
Pulse current for 5s	20 Arms	30 Arms
Power	4 kVA	6 kVA
Switching frequency	16 kHz	8 kHz
Power loss for In	80 W	130 W

Output data Compax3Sxxx at 3*400VAC

Controller type	S015V4	S038V4	S075V4	S150V4	S300V4
Output voltage	$3 \times 0-400 \mathrm{~V}$				
Nominal output current	1.5Arms	3.8Arms	7.5Arms	15Arms	30Arms
Pulse current for 5s	4.5Arms	9.0Arms	15Arms	30Arms	60Arms*
Power	1 kVA	2.5 kVA	5 kVA	10kVA	20kVA
Switching frequency	16 kHz	16 kHz	16 kHz	8 kHz	8 kHz
Power loss for In	60W	80W	120W	160W	350W

*With cyclic peak currents (S8 or S9 operation), the device utilization (683.2) may not be > 70\%; otherwise it is necessary to use a condenser module "C4Module (see on page 372)".

Output data Compax3Sxxx at 3*480VAC

Controller type	S015V4	S038V4	S075V4	S150V4	S300V4
Output voltage					
Nominal output current	1.5 Arms	3.8 Arms	6.5 Arms	13.9 Arms	30 Arms
Pulse current for 5s	4.5 Arms	7.5 Arms	15 Arms	30 Arms	$60 \mathrm{Arms}^{*}$
Power	1.25 kVA	3.1 kVA	6.2 kVA	11.5 kVA	25 kVA
Switching frequency	16 kHz	16 kHz	16 kHz	8 kHz	8 kHz
Power loss for In	60 W	80 W	120 W	160 W	350 W

*With cyclic peak currents (S8 or S9 operation), the device utilization (683.2) may not be > 70\%; otherwise it is necessary to use a condenser module "C4Module (see on page 372)".

Output data Compax3Mxxx at 3*230VAC

Device type Compax3	M050D6	M100D6	M150D6	M300D6
Input Voltage				
Output Voltage	$325 \mathrm{VDC} \pm 10 \%$			
Output nominal current	$3 \times 0-230 \mathrm{~V}(0 \ldots 500 \mathrm{~Hz})$			
Pulse current for 5s*	5 Arms	10 Arms	15 Arms	30 Arms
Power	10 Arms	20 Arms	30 Arms	60 Arms
Switching frequency of the motor current	2 kVA	4 kVA	6 kVA	12 kVA
Heat dissipation for In	8 kHz	8 kHz	8 kHz	8 kHz

* Turning frequency for pulse current: $f>5 \mathrm{~Hz}$; with an electrical turning frequency of $\mathrm{f}<5 \mathrm{~Hz}$, the maximum pulse current time is 100 ms
** Maximum additional losses with option card 5 W .

Output data Compax3Mxxx at 3*400VAC

Device type Compax3	M050D6	M100D6	M150D6	M300D6
Input Voltage	565VDC $\pm 10 \%$			
Output Voltage	$3 \times 0-400 \mathrm{~V}$ ($0 . . .500 \mathrm{~Hz}$)			
Output nominal current	5Arms	10Arms	15Arms	30Arms
Pulse current for 5s*	10Arms	20Arms	30Arms	60Arms
Power	3.33 kVA	6.66kVA	10kVA	20kVA
Switching frequency of the motor current	8kHz	8kHz	8kHz	8 kHz
Heat dissipation for In	70W+**	90W+**	120W+**	270W+**

* Turning frequency for pulse current: $f>5 \mathrm{~Hz}$; with an electrical turning frequency of $f<5 \mathrm{~Hz}$, the maximum pulse current time is 100 ms
** Maximum additional losses with option card 5 W .
Output data Compax 3 Mxxx at $3 * 480$ VAC

Device type Compax3	M050D6	M100D6	M150D6	M300D6
Input Voltage	680VDC $\pm 10 \%$			
Output Voltage	$3 x$ 0-480V (0...500Hz)			
Output nominal current	4Arms	8Arms	12.5Arms	25Arms
Pulse current for 5s*	8Arms	16Arms	25Arms	50Arms
Power	3.33 kVA	6.66kVA	10kVA	20kVA
Switching frequency of the motor current	8 kHz	8 kHz	8 kHz	8 kHz
Heat dissipation for In	70W+**	90W+**	120W+**	270W+**

* Turning frequency for pulse current: $\mathrm{f}>5 \mathrm{~Hz}$; with an electrical turning frequency of $\mathrm{f}<5 \mathrm{~Hz}$, the maximum pulse current time is 100 ms
** Maximum additional losses with option card 5 W .
Output data Compax 3 Hxxx at $\mathbf{3}^{*} 400 \mathrm{VAC}$

Controller type	H050V4	H090V4	H125V4	H155V4	
Output voltage	$3 x 0-400 \mathrm{~V}$				
Nominal output current	50 Arms	90 Arms	125 Arms	155 Arms	
Pulse current for 5s *	75 Arms	135 Arms	187.5 Arms	232.5 Arms	
Power	35 kVA	62 kVA	86 kVA	107 kVA	
Switching frequency	8 kHz	8 kHz	8 kHz	8 kHz	
Power loss for In	880 W	900 W	1690 W	1970 W	

* during low speeds, the overload time is reduced to 1 s . Limit:
< 2.5 electric rev/s (= actual revolutions/s * number of pole pairs) resp. >2.5 pitch/s
Output data Compax 3 Hxxx at $3 * 480 \mathrm{VAC}$

Controller type	H050V4	H090V4	H125V4	H155V4	
Output voltage	$3 \times 0-480 \mathrm{~V}$				
Nominal output current	43 Arms	85 Arms	110 Arms	132 Arms	
Pulse current for $5 \mathbf{s}^{*}$	64.5 Arms	127.5 Arms	165 Arms	198 Arms	
Power	35 kVA	70 kVA	91 kVA	109 kVA	
Switching frequency	8 kHz	8 kHz	8 kHz	8 kHz	
Power loss for In	850 W	1103 W	1520 W	1800 W	

* during low speeds, the overload time is reduced to 1s. Limit:
< 2.5 electric rev/s (= actual revolutions/s * number of pole pairs) resp. >2.5 pitch/s

Resulting nominal and peak currents depending on the switching frequency

Compax3S0xxV2 at $\mathbf{1 * 2 3 0 V A C / 2 4 0 V A C ~}$

Switching frequency		$\mathbf{S 0 2 5 V 2}$	$\mathbf{S 0 6 3 V 2}$
$\mathbf{1 6 k H z}$	$\mathrm{I}_{\text {nom }}$	$\mathbf{2 . 5 A}_{\text {rms }}$	$\mathbf{6 . 3 A}_{\text {rms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$\mathbf{5 . 5 A}_{\text {rms }}$	$\mathbf{1 2 . 6 A}_{\text {rms }}$
	$\mathrm{I}_{\text {nom }}$	$2.5 \mathrm{~A}_{\text {rs }}$	$5.5 \mathrm{~A}_{\text {rms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$5.5 \mathrm{~A}_{\text {ms }}$	$12.6 \mathrm{~A}_{\text {ms }}$

Compax3S1xxV2 at $3 * 230 V A C / 240 V A C$

Switching frequency*		$\mathbf{S 1 0 0 V 2}$	$\mathbf{S 1 5 0 V 2}$
$\mathbf{8 k H z}$	$\mathrm{I}_{\text {nom }}$	-	$\mathbf{1 5 A}_{\text {rms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	-	$\mathbf{3 0 A}_{\text {rms }}$
	$\mathrm{I}_{\text {nom }}$	$\mathbf{1 0 A}_{\text {rms }}$	$12.5 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$\mathbf{2 0 A}_{\text {rms }}$	$25 \mathrm{~A}_{\text {ms }}$
$\mathbf{3 2 k H z}$	$\mathrm{I}_{\text {nom }}$	$8 \mathrm{~A}_{\text {ms }}$	$10 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$16 \mathrm{~A}_{\text {ms }}$	$20 \mathrm{~A}_{\text {ms }}$

Compax3S0xxV4 at 3*400VAC

Switching frequency*		S015V4	S038V4	S075V4	S150V4	S300V4
8kHz	$\mathrm{I}_{\text {nom }}$	-	-	-	$15 \mathrm{~A}_{\text {ms }}$	30A ${ }_{\text {rms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	-	-	-	30A ${ }_{\text {rms }}$	$60 A_{\text {rms }}$
16kHz	$\mathrm{I}_{\text {nom }}$	$1.5 \mathrm{~A}_{\text {rms }}$	$3.8 \mathrm{~A}_{\text {rms }}$	$7.5 \mathrm{~A}_{\text {rms }}$	$10.0 \mathrm{~A}_{\text {ms }}$	$26 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	4.5 $\mathrm{A}_{\mathrm{rms}}$	$9.0 \mathrm{~A}_{\text {rms }}$	$15.0 \mathrm{~A}_{\text {rms }}$	$20.0 \mathrm{~A}_{\text {ms }}$	$52 \mathrm{~A}_{\text {ms }}$
32kHz	$\mathrm{I}_{\text {nom }}$	$1.5 \mathrm{~A}_{\mathrm{ms}}$	$2.5 \mathrm{~A}_{\text {ms }}$	$3.7 \mathrm{~A}_{\mathrm{ms}}$	$5.0 \mathrm{~A}_{\text {ms }}$	$14 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$3.0 \mathrm{~A}_{\mathrm{ms}}$	$5.0 \mathrm{~A}_{\text {ms }}$	$10.0 \mathrm{~A}_{\text {ms }}$	$10.0 \mathrm{~A}_{\text {ms }}$	$28 \mathrm{~A}_{\text {ms }}$

Compax3S0xxV4 at 3*480VAC

Switching frequency*		S015V4	S038V4	S075V4	S150V4	S300V4
8kHz	$\mathrm{I}_{\text {nom }}$	-	-	-	$13.9 \mathrm{~A}_{\text {rms }}$	30A ${ }_{\text {rms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	-	-	-	30A ${ }_{\text {rms }}$	$60 \mathrm{~A}_{\text {rms }}$
16kHz	Inom	$1.5 \mathrm{~A}_{\text {rms }}$	$3.8 \mathrm{~A}_{\text {rms }}$	$6.5 \mathrm{~A}_{\text {rms }}$	$8.0 \mathrm{~A}_{\text {ms }}$	$21.5 \mathrm{~A}_{\mathrm{ms}}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	4.5A $\mathrm{A}_{\text {rs }}$	$7.5 \mathrm{~A}_{\text {rms }}$	$15.0 \mathrm{~A}_{\text {rms }}$	$16.0 \mathrm{~A}_{\text {ms }}$	$43 \mathrm{~A}_{\text {ms }}$
32kHz	$\mathrm{I}_{\text {nom }}$	$1.0 \mathrm{~A}_{\text {ms }}$	$2.0 \mathrm{~A}_{\text {ms }}$	$2.7 \mathrm{~A}_{\text {ms }}$	$3.5 \mathrm{~A}_{\text {ms }}$	$10 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$2.0 \mathrm{~A}_{\text {ms }}$	$4.0 \mathrm{~A}_{\text {rms }}$	$8.0 \mathrm{~A}_{\text {ms }}$	$7.0 \mathrm{~A}_{\text {ms }}$	$20 \mathrm{~A}_{\text {ms }}$

[^7]Resulting nominal and peak currents depending on the switching frequency

Compax3MxxxD6 at 3*400VAC

Switching frequency*		M050D6	M100D6	M150D6	M300D6
8kHz	$\mathrm{I}_{\text {nom }}$	$5 \mathrm{~A}_{\text {ms }}$	$10 \mathrm{~A}_{\text {ms }}$	$15 \mathrm{~A}_{\text {ms }}$	$30 \mathrm{~A}_{\text {rms }}$
	$\begin{array}{\|l\|} \hline I_{\text {peak }} \\ (<5 s) \\ \hline \end{array}$	$10 \mathrm{~A}_{\mathrm{ms}}$	$20 \mathrm{~A}_{\text {ms }}$	$30 \mathrm{~A}_{\text {rms }}$	$60 \mathrm{~A}_{\text {rms }}$
16kHz	$\mathrm{I}_{\text {nom }}$	$3.8 \mathrm{~A}_{\text {ms }}$	$7.5 \mathrm{~A}_{\text {ms }}$	$10 \mathrm{~A}_{\text {rms }}$	$20 \mathrm{~A}_{\text {rms }}$
	$\begin{array}{\|l} l_{\text {peak }} \\ (<5 s) \end{array}$	$7.5 \mathrm{~A}_{\text {ms }}$	$15 \mathrm{~A}_{\mathrm{ms}}$	$20 \mathrm{~A}_{\text {rms }}$	$40 \mathrm{~A}_{\text {ms }}$
32kHz	$\mathrm{I}_{\text {nom }}$	$2.5 \mathrm{~A}_{\text {ms }}$	$3.8 \mathrm{~A}_{\mathrm{ms}}$	$5 \mathrm{~A}_{\text {ms }}$	$11 \mathrm{~A}_{\text {ms }}$
	$\begin{aligned} & I_{\text {peak }} \\ & (<5 \mathrm{~s}) \end{aligned}$	$5 \mathrm{~A}_{\mathrm{ms}}$	$7.5 \mathrm{~A}_{\mathrm{rms}}$	$10 \mathrm{~A}_{\text {rms }}$	$22 \mathrm{~A}_{\text {rms }}$

Compax3MxxxD6 at 3*480VAC

Switching frequency*		M050D6	M100D6	M150D6	M300D6
8kHz	$\mathrm{I}_{\text {nom }}$	$4 \mathrm{~A}_{\text {ms }}$	$8 \mathrm{~A}_{\text {rms }}$	$12.5 \mathrm{~A}_{\text {ms }}$	25A ${ }_{\text {ms }}$
	$\begin{aligned} & l_{\text {peak }} \\ & (<5 \mathrm{~s}) \end{aligned}$	$8 \mathrm{~A}_{\text {ms }}$	$16 \mathrm{~A}_{\text {rms }}$	$25 \mathrm{~A}_{\text {ms }}$	$50 \mathrm{~A}_{\text {rms }}$
16kHz	$\mathrm{I}_{\text {nom }}$	$3 \mathrm{~A}_{\text {ms }}$	$5.5 \mathrm{~A}_{\text {rms }}$	$8 \mathrm{~A}_{\text {ms }}$	$15 \mathrm{~A}_{\text {rms }}$
	$\begin{array}{\|l\|} \hline I_{\text {peak }} \\ (<5 s) \\ \hline \end{array}$	$6 A_{\text {ms }}$	$11 \mathrm{~A}_{\text {rms }}$	$16 \mathrm{~A}_{\mathrm{ms}}$	$30 \mathrm{~A}_{\text {rms }}$
32kHz	$\mathrm{I}_{\text {nom }}$	$2 \mathrm{~A}_{\mathrm{ms}}$	$2.5 \mathrm{~A}_{\mathrm{ms}}$	$4 \mathrm{~A}_{\text {ms }}$	$8.5 \mathrm{~A}_{\text {rms }}$
	$\begin{aligned} & \begin{array}{l} l_{\text {peak }} \\ (<5 \mathrm{~s}) \end{array} \\ & \hline \end{aligned}$	$4 \mathrm{~A}_{\mathrm{ms}}$	$5 \mathrm{~A}_{\text {rms }}$	$8 \mathrm{~A}_{\mathrm{ms}}$	$17 \mathrm{~A}_{\text {ms }}$

The values marked with grey are the pre-set values (standard values)!
*corresponds to the frequency of the motor current
Resulting nominal and peak currents depending on the switching frequency

Compax3HxxxV4 at 3*400VAC

Switching frequency*		H050V4	H090V4	H125V4	H155V4
8kHz	$\mathrm{I}_{\text {nom }}$	$50 \mathrm{~A}_{\text {ms }}$	$90 \mathrm{~A}_{\text {ms }}$	$125 \mathrm{~A}_{\text {ms }}$	$155 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$75 \mathrm{~A}_{\text {ms }}$	$135 \mathrm{~A}_{\text {ms }}$	$\begin{aligned} & 187.5 \mathrm{~A}_{\mathrm{r}} \\ & \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 232.5 A_{r} \\ & \mathrm{~ms} \end{aligned}$
16kHz	$\mathrm{I}_{\text {nom }}$	$33 \mathrm{~A}_{\text {ms }}$	$75 \mathrm{~A}_{\text {ms }}$	$82 \mathrm{~A}_{\text {ms }}$	$100 \mathrm{~A}_{\text {ms }}$
	$\mathrm{l}_{\text {peak }}(<5 \mathrm{~s})$	$49.5 \mathrm{~A}_{\text {ms }}$	$\begin{aligned} & 112.5 \mathrm{~A}_{\mathrm{r}} \\ & \mathrm{~ms} \end{aligned}$	$123 \mathrm{~A}_{\text {ms }}$	$150 \mathrm{~A}_{\text {ms }}$
32kHz	$\mathrm{I}_{\text {nom }}$	$19 \mathrm{~A}_{\text {ms }}$	$45 \mathrm{~A}_{\text {ms }}$	$49 \mathrm{~A}_{\text {ms }}$	$59 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$28.5 \mathrm{~A}_{\text {ms }}$	$67.5 \mathrm{~A}_{\text {ms }}$	$73.5 \mathrm{~A}_{\mathrm{ms}}$	$88.5 \mathrm{~A}_{\mathrm{ms}}$

Compax3HxxxV4 at 3*480VAC

Switching frequency*		H050V4	H090V4	H125V4	H155V4
8kHz	$\mathrm{I}_{\text {nom }}$	$43 \mathrm{~A}_{\text {ms }}$	$85 \mathrm{~A}_{\text {ms }}$	$110 \mathrm{~A}_{\text {ms }}$	$132 \mathrm{~A}_{\text {ms }}$
	$\mathrm{l}_{\text {peak }}(<5 \mathrm{~s})$	$64.5 \mathrm{~A}_{\text {ms }}$	$\begin{aligned} & 127.5 A_{r} \\ & \mathrm{~ms} \end{aligned}$	$165 \mathrm{~A}_{\text {ms }}$	$198 \mathrm{~A}_{\text {ms }}$
16kHz	$\mathrm{I}_{\text {nom }}$	$27 \mathrm{~A}_{\text {rms }}$	$70 \mathrm{~A}_{\text {rms }}$	70A ${ }_{\text {ms }}$	84 $\mathrm{A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$40.5 \mathrm{~A}_{\text {ms }}$	$105 \mathrm{~A}_{\text {ms }}$	$105 \mathrm{~A}_{\text {ms }}$	$126 \mathrm{~A}_{\mathrm{ms}}$

32 kHz	$\mathrm{I}_{\text {nom }}$	$16 \mathrm{~A}_{\text {ms }}$	$40 \mathrm{~A}_{\text {ms }}$	$40 \mathrm{~A}_{\text {ms }}$	$48 \mathrm{~A}_{\text {ms }}$
	$\mathrm{I}_{\text {peak }}(<5 \mathrm{~s})$	$24 \mathrm{~A}_{\text {ms }}$	$60 \mathrm{~A}_{\text {ms }}$	$60 \mathrm{~A}_{\text {ms }}$	$72 \mathrm{~A}_{\text {ms }}$

The values marked with grey are the pre-set values (standard values)!
*corresponds to the frequency of the motor current
Resolution of the motor position

For option F10: Resolver	\bullet Position resolution: 16 Bits (= $\left.0.005^{\circ}\right)$
	\bullet Absolute accuracy: $\pm 0.167^{\circ}$
For option F11: SinCos ${ }^{\circ}$	\bullet Position resolution: 13.5 Bits / Encoder sine period
	$=>0.03107^{\circ} /$ encoder resolution

Accuracy

The exactitude of the position signal is above all determined by the exactitude of the feedback system used.

Supported Motor and Feedback Systems

Motors Direct drives - Linear motors - Torque motors	- Sinusoidally commutated synchronous motors - Maximum electrical turning frequency: $1000 \mathrm{~Hz}^{*}$ - Max. velocity on 8 pole motors: $15000 \mathrm{~min}^{-1}$. - General max. speed: $60^{* 1} 1000$ /number of pole pairs in [min^{-1}]. - Max. number of poles $=600$ - Sinusoidal commutated asynchronous motors - Maximum electrical turning frequency: 1000 Hz - Max. velocity: 60*1000/number of pole pairs - slip in [$\left.\mathrm{min}^{-1}\right]$. - Field weakening: typically up to triple (higher on request). - Temperature sensor: KTY84-130 (insulated in accordance with EN60664-1 or IEC60664-1) - 3 phase synchronous direct drives
Position encoder (Feedback)	Option F10: Resolver
LTN:	-RE-21-1-A05, RE-15-1-B04
Tamagawa:	-TS2610N171E64, TS2620N21E11, TS2640N321E64, TS2660N31E64
Tyco (AMP)	- V23401-T2009-B202
	Option F11: SinCos ${ }^{\text {® }}$
	\bullet Rotary feedback with HIPERFACE ${ }^{\oplus}$ interface: - Singleturn (SICK\|Stegmann) - Multiturn (SICK\|Stegmann) Absolute position up to 4096 motor revolutions. - For example: SRS50, SRM50, SKS36, SKM36, SEK52, SEK52, SEL52, SEK37, SEL37, SEK160, SEK90

[^8]| Special Feedback Systems | Option F12 |
| :---: | :---: |
| Analog hall sensors | - Sine-Cosine signal (max. 5Vpp*; typical 1Vpp) 90° offset \bullet U-V signal (max. 5Vpp*; typical 1 Vpp) 120° offset. |
| Encoder (linear or rotary) | - Sine-Cosine (max. 5Vpp*; typical 1Vpp) (max. 400 kHz) or
 -TTL (RS422) (max. 5MHz; track A or B)
 - Bypass function for encoder signals (limit frequency** 5 MHz , track A or B)
 with the following modes of commutation:
 - Automatic commutation (see on page 344) or
 - U, V, W or R, S, T commutation signals (NPN open collector) e.g. digital hall sensors, incremental encoders made by Hengstler (F series with electrical ordering variant 6) |
| EnDat*** with incremental (Sine Cosine) track | - EnDat 2.1 or EnDat 2.2 (Endat01, Endat02) feedback
 - linear or rotary
 - max. 400kHz Sine-Cosine |
| EnDat 2.2*** (fully digital) | - EnDat 2.2 (Endat01, Endat02) feedback
 - linear or rotary
 - max. Cable length: 25 m |
| EnDat2.1***(fully digital) | - EnDat 2.1 without incremental track
 - Supported types: EQI11xx, ECI11xx, ECI11x
 - max. Cable length: 90 m |
| Distance coded feedback systems | - Distance coding with 1 VSS interface
 - Distance coding with RS422 - Interface (Encoder) |
| *Max. differential input between
 ** Limit frequency $=1 \mathrm{MHz}$ for C
 *** Digital, bidirectional interface | SIN- (X13/7) and SIN+ (X13/8). ompax3M (higher bandwidths on request) |

Feedback error compensation

Feedback error compensation	 amplification) for analog hall sensors and sine-cosine encoder can be activated in the MotorManager.

Motor holding brake output

Motor holding brake output	Compax3
Voltage range	$21-27 \mathrm{VDC}$
Maximum output current (short circuit proof)	1.6 A
Securing of brake Compax3M	3.15 A

Braking operation Compax3S0xxV2 1AC

Controller type	S025V2	S063V2
Capacitance / storable energy	$560 \mu \mathrm{~F} / 15 \mathrm{Ws}$	$1120 \mu \mathrm{~F} / 30 \mathrm{Ws}$
Minimum braking- resistance	100Ω	56Ω
Recommended nominal power rating	$20 \ldots 60 \mathrm{~W}$	$60 \ldots 180 \mathrm{~W}$
Maximum continuous current	8 A	15 A

Braking operation Compax3S1xxV2 3AC

Controller type	S100V2	S150V2
Capacitance / storable energy	$780 \mu \mathrm{~F} / 21 \mathrm{Ws}$	$1170 \mu \mathrm{~F} / 31 \mathrm{Ws}$
Minimum braking- resistance	22Ω	15Ω
Recommended nominal power rating	$60 \ldots 450 \mathrm{~W}$	$60 \ldots 600 \mathrm{~W}$
Maximum continuous current	20 A	20 A

Braking operation Compax3SxxxV4 3AC

Controller type	S015V4	S038V4	S075V4	S150V4	S300V4
Capacity / storable energy 400V $/$ 480V	$235 \mu \mathrm{~F}$	$235 \mu \mathrm{~F}$	$470 \mu \mathrm{~F}$	$690 \mu \mathrm{~F}$	$1230 \mu \mathrm{~F}$
$37 / 21 \mathrm{Ws}$	$37 / 21 \mathrm{Ws}$	$75 / 42 \mathrm{Ws}$	$110 / 61 \mathrm{Ws}$	$176 / 98 \mathrm{Ws}$	
Minimum ballast - resistance	100Ω	100Ω	56Ω	47Ω	15Ω
Recommended nominal power rating	$60 \ldots$	$60 \ldots 250 \mathrm{~W}$	$60 \ldots 500$	$60 \ldots 1000$	$60 \ldots 1000$
Maximum continuous current	100 W		W	W	W

Braking operation Compax3MxxxD6 (axis controller)

Device type Compax3	M050	M100	M150	M300
Capacityl storable energy	$110 \mu \mathrm{~F} /$ 18 Ws at 400 V 10 Ws at 480V	$220 \mu \mathrm{~F} /$ 37 Ws at 400 V 21 Ws at 480 V	$220 \mu \mathrm{~F} /$ 37 Ws at 400 V 21 Ws at 480 V	$440 \mu \mathrm{~F} /$ 74 Ws at 400 V 42 Ws at 480 V

Braking operation of Compax3HxxxV4

Controller type	H050V4	H090V4	H125V4	H155V4
Capacitance / storable energy	$2600 \mu \mathrm{~F}$	$3150 \mu \mathrm{~F}$	$5000 \mu \mathrm{~F}$	$5000 \mu \mathrm{~F}$
400V / 480V	$602 / 419 \mathrm{Ws}$	$729 / 507 \mathrm{Ws}$	$1158 / 806 \mathrm{Ws}$	$1158 / 806 \mathrm{Ws}$
Minimum braking- resistance	24Ω	15Ω	8Ω	8Ω
Maximum continuous current	11 A	17 A	31 A	31 A

Braking operation PSUPxxD6 (mains module)

Device type	PSUP10	PSUP20	PSUP30
Capacitance / storable energy	$550 \mu \mathrm{~F} /$ 92 Ws at 400 V 53 Ws at 480 V	$1175 \mu \mathrm{~F} /$ 197 Ws at 400 V 114 Ws at 480 V	$1175 \mu \mathrm{~F} /$ 197 Ws at 400 V 114 Ws at 480 V
Minimum brakingresistance	27Ω	15Ω	10Ω
Recommended nominal power rating	500 ... 1500 W	500 ... 3500 W	500 ... 5000 W
Pulse power rating for 1s	22 kW	40 kW	60 kW
Maximum permissible continuous current	13 A	15 A	15 A

Ballast resistors Compax3

Ballast resistor (see on page 359)	Device	Nominal Power
BRM08/01 (100 Ω)	Compax3S025V2 Compax3S015V4 Compax3S038V4	60 W
BRM05/01 (56 Ω)	Compax3S063V2 Compax3S075V4	180 W
BRM05/02 (56 Ω)	Compax3S075V4	570 W
BRM10/01 (47 Ω)	Compax3S150V4	570 W
BRM10/02 (47 Ω)	Compax3S150V4	1500 kW
BRM04/01 (15 Ω)	Compax3S150V2 Compax3S300V4 PSUP20D6	570 W
BRM04/02 (15 Ω)	Compax3S150V2 Compax3S300V4 PSUP20D6	740 W
BRM04/03 (15 Ω)	Compax3S300V4 PSUP20D6	1500 W
BRM09/01 (22 Ω)	Compax3S100V2	570 W
BRM11/01 (27 Ω)	Compax3H0xxV4	3500 W
BRM13/01 (30 Ω)	$\begin{array}{\|l\|} \hline \text { PSUP10D6 } \\ \text { PSUP20D6** } \\ \text { PSUP30D6** } \\ \hline \end{array}$	500 W
BRM14/01 (15 Ω)	$\begin{aligned} & \hline \text { PSUP10D6* } \\ & \text { PSUP20D6 } \\ & \text { PSUP30D6 } \end{aligned}$	500 W
BRM12/01 (18 Ω)	Compax3H1xxV4 PSUP30D6	4500 W

*for PSUP10D6 $2 \times 15 \Omega$ in series
**for PSUP20D6 and PSUP30D6 2x30 parallel

Size / weight Compax3S

Controller type	$\begin{array}{\|l\|} \hline \text { Dimensions } \\ \mathrm{HxW} \times \mathrm{D}[\mathrm{~mm}] \\ \hline \end{array}$	Weight [kg]
Compax3S025V2	$191 \times 84 \times 172$	2.0
Compax3S063V2	$191 \times 100 \times 172$	2.5
Compax3S015V4	$248 \times 84 \times 172$	3.1
Compax3S100V2	$248 \times 115 \times 172$	4.3
Compax3S150V2	$248 \times 158 \times 172$	6.8
Compax3S038V4	$248 \times 100 \times 172$	3.5
Compax3S075V4	$248 \times 115 \times 172$	4.3
Compax3S150V4	$248 \times 158 \times 172$	6.8
Compax3S300V4	$380 \times 175 \times 172$	10.9

Minimum mounting distance: 15 mm at the sides, above \& below 100 mm

Protection type IP20

Drawings, Mounting (see on page 69, see on page 75)

Size / weight PSUP/Compax3M

Device type	Dimensions HxWxD $[\mathrm{mm}]$	Weight $[\mathrm{kg}]$
PSUP10D6	$360 \times 50 \times 263$	3.95
PSUP20D6 \& PSUP30D6	$360 \times 100 \times 263$	6.3
Compax3M050D6	$360 \times 50 \times 263$	3.5
Compax3M100D6	$360 \times 50 \times 263$	3.6
Compax3M150D6	$360 \times 50 \times 263$	3.6
Compax3M300D6	$360 \times 100 \times 263$	5.25

Protection type IP20

Size / weight Compax3H

Mounting (see on page 69, see on page 75)

Controller type	Dimensions HxWxD [mm]	Weight [kg]
Compax3H050V4	$453 \times 252 \times 245$	17.4
Compax3H090V4	$668.6 \times 257 \times 312$	32.5
Compax3H125V4	$720 \times 257 \times 355$	41
Compax3H155V4	$720 \times 257 \times 355$	41

Protection class IP20 when mounted in a control cabinet (not for
Compax3H1xxxV4)
Digital Inputs/outputs

Digital Inputs	$\bullet 8$ digital inputs - Input resistor $22 \mathrm{k} \Omega$ - Signal level -> 9.15V = "1" (38.2\% of the control voltage applied) - < 8.05V = "0" (33.5\% of the control voltage applied)
Digital Outputs	- 4 digital outputs - Load max. 100 mA

Safety technology Compax3S

Safe torque-off in accordance with EN ISO 13849: 2008, Category 3, PL d/e Certified.
Test mark IFA 1003004

- For implementation of the "protection against unexpected start-up" function described in EN1037.
- Please note the circuitry examples (see on page 78).

Compax3S STO (=safe torque off)

Nominal voltage of the inputs	24 V
Required isolation of the 24V control voltage	Grounded protective extra low voltage, PELV
Protection of the STO control voltage	1 A
Grouping of safety level	<500 000 STO cycles per year are assumed. -STO switch-off via internal safety relay \& digital input: PL e, PFHd=2.98E-8
-STO switch-off via internal safety relay \& fieldbus:	
PL d, PFHd=1.51E-7 (is applicable for a MTTFd=15	
years of the external PLC)	
-Lifetime: 20 Years	

Safety technology Compax3M

Safe torque-off in accordance with EN ISO 13849-1: 2007, Category 3, PL=e Certified.
Test mark MFS 09029

- Please respect the stated safety technology on the type designation plate (see on page 13) and the circuitry examples (see on page 91)

Compax3M S1 Option: Signal inputs for connector X14

Nominal voltage of the inputs	24 V
Required isolation of the 24 V control voltage	Grounded protective extra low voltage, PELV
Protection of the STO control voltage	1A
Number of inputs Signal inputs via optocoupler	$\begin{aligned} & 2 \\ & \text { Low }=0 \ldots 7 \mathrm{~V} \text { DC or open } \\ & \text { High }=15 \ldots . .30 \mathrm{~V} \text { DC } \\ & \mathrm{lin}_{\text {a }} 24 \mathrm{~V} \text { DC: } 8 \mathrm{~mA} \end{aligned}$
ST01/	Low = STO activated High = STO deactivated Reaction time max. 3ms
STO2/	Low = STO activated High = STO deactivated Reaction time max. 3ms
Switch-off time with unequal input statuses	20 s (max. error reaction time)
Grouping of safety level	- Category 3 - $\mathrm{PL}=\mathrm{e}$ (according to table 4 in EN ISO 13849-1 this corresponds to SIL 3) - $\mathrm{PFHd}=4.29 \mathrm{E}-8$ -Lifetime: 20 years

UL certification for Compax3S

conform to UL:	\bullet according to UL508C
Certified	\diamond E-File_No.: E235342

The UL certification is documented by a "UL" logo on the device (type specification plate).
"UL" logo:

UL approval for Compax3M

Conform to UL:	\bullet in accordance with UL508C
Certified	\bullet E-File_No.: E235342

The UL approval is documented by a "UL" logo on the device (type specification plate).

Insulation requirements

Enclosure rating	Protection class in accordance with EN 60664-1
Protection against human contact with dangerous voltages	In accordance with EN 61800-5-1
Overvoltage category	Voltage category III in accordance with EN 60664-1
Degree of contamination	Degree of contamination 2 in accordance with EN 60664-1 and EN 61800-5-1

Environmental conditions Compax3S and Compax3H

General ambient conditions	In accordance with EN 60 721-3-1 to 3-3 Climate (temperature/humidity/barometric pressure): Class 3K3		
Permissible ambient temperature:			
Operation storage transport	0 to $+45^{\circ} \mathrm{C} \quad$ class 3K3 -25 to $+70^{\circ} \mathrm{C} \quad$ class 2K3 -25 to $+70^{\circ} \mathrm{C} \quad$ class 2K3		
Tolerated humidity:	no condensation		
Operation storage transport	$<=85 \%$ class 3K3 $<=95 \%$ class 2K3 $<=95 \%$ class 2K3		
Elevation of operating site	$<=1000 \mathrm{~m}$ above sea level for 100\% load ratings $<=2000 \mathrm{~m}$ above sea level for 1\% / 100m power reduction please inquire for greater elevations		
Mechanic resonances:	EN $60068-2-6$ (sinusoidal excitation) Sealing		Protection type IP20 in accordance with
:---			
EN 60529			

Cooling Compax3S and Compax3H

Cooling mode:	C3S025V2 ... S150V4: Convection C3S300V4 \& C3H: Forced air ventilation with fan in the heat dissipator Air flow rate:459m/h (C3H)
Supply:	C3S300V4, C3H050, C3H090 internal C3H125, C3H155 external 220/240VAC: $140 \mathrm{~W}, 2.5 \mu \mathrm{~F}$, Stator -62Ω Optionally on request: 110/120VAC: $130 \mathrm{~W}, 10 \mu \mathrm{~F}$, Stator - 16Ω Circuit breaker:3A

EMC limit values Compax3S and Compax3H

EMC interference emission	Limit values in accordance with EN 61 800-3, Limit value class C3/C4 without additional mains filter: Information on C2 limit value classes (see on page 18)
EMC disturbance immunity	Industrial area limit values in accordance with EN 61 800-3

Ambient conditions PSUP/Compax3M

General ambient conditions	In accordance with EN 60 721-3-1 to 3-3 Climate (temperature/humidity/barometric pressure): Class 3K3
Permissible ambient temperature:	
Operation storage transport	$\begin{array}{ll} 0 \text { to }+40^{\circ} \mathrm{C} & \text { Class } 3 \mathrm{~K} 3 \\ -25 \text { to }+70^{\circ} \mathrm{C} & \\ -25 \text { to }+70^{\circ} \mathrm{C} & \end{array}$
Tolerated humidity:	no condensation
Operation storage transport	$<=85 \%$ class $3 K 3$ $<=95 \%$ $<=95 \%$$\quad$ (Relative humidity)
Elevation of operating site	<=1000m above sea level for 100\% load ratings <=2000m above sea level for 1\% / 100m power reduction please inquire for greater elevations
Sealing	Protection type IP20 in accordance with EN 60529
Mechanic resonances:	Class 2M3, $20 \mathrm{~m} / \mathrm{s}^{2} ; 8-200 \mathrm{~Hz}$

Cooling PSUP/Compax3M

Cooling mode:	Forced air ventilation with fan in the heat dissipator

EMV limit values PSUP/Compax3M

EMC interference emission	Limit values in accordance with EN 61 800-3, Limit value class C3 with mains filter.
EMC disturbance immunity	Industrial area limit values in accordance with EN 61 800-3

EC directives and applied harmonized EC norms

EC low voltage directive	EN 61800-5-1, Standard for electric power 2006/95/EG
	drives with settable speed; requirements to
electric safety	
	EN 60664-1, isolation coordinates for electrical
	equipment in low-voltage systems
	EN 60204-1, machinery norm partly applied
EC-EMC-directive	EN 61800-3, EMC standard
2004/108/EC	Product standard for variable speed drives

COM ports

RS232	$\bullet 115200$ baud \bullet Word length: 8 bits, 1 start bit, 1 stop bit \bullet Hardware handshake XON, XOFF
RS485 (2 or 4-wire)	H600, 19200, 38400, 57600 or 115200 baud \bullet Word length $7 / 8$ bit, 1 start bit, 1 stop bit \bullet Parity (can be switched off) even/odd $\bullet 2$ or 4-wire
USB (Compax3M)	\bullet USB 2.0 Full Speed compatible

Load position control

Dual Loop Option	2. Feedback system for load position control (see on page 156) possible.

Signal interfaces

Signal inputs / signal sources	- Encoder input track A/B (RS422) - up to max. 10 MHz - Internal quadrature of the resolution - Step / direction input (24 V level) Max. 300 kHz at $\geq 50 \Omega$ source impedance and minimum pulse width of $1.6 \mu \mathrm{~s}$. $+/-10 \mathrm{~V}$ analog input 14Bit; 62.5μ s scanning rate. -SSI - feedback
Signal outputs	- Encoder simulation - 1... 16384 increments/revolution or pitch - Limit frequency** 620 kHz (track A or B) - Bypass function for encoder feedback with feedback module F12 (Limit frequency* 5 MHz , track A or B).
Signal transmission	HEDA (Option M10 or M11) Transfer of process values: - from Master to Slave, - from Slave to Master and - from Slave to Slave.

** Limit frequency $=1 \mathrm{MHz}$ for Compax3M (higher bandwidths on request)
Functions

Operating modes:	- Speed control - Direct positioning (position control) - Positioning with set selection
Speed control	- Cyclic predefined Setpoint value - Up to 2 cyclic actual values
Direct positioning	- Cyclic predefined Setpoint value - Cyclic actual values - Different motion functions
Positioning with set selection	- up to 31 motion sets possible. - Different motion functions
Motion functions	- Absolute positioning - Relative positioning - Electronic Gearbox (Gearing) - Reg-related positioning (exactitude $<1 \mu \mathrm{~s}$) - Speed control - Stop - Set - Defining status bits for the sequence control -Specification of speed, acceleration, deceleration and jerk - Different machine zero modes - Absolute / continuous operation
Actual position	- Encoder simulation -Resolution: 1-16384 increments / revolution
Signal monitor	-2 channels $\pm 10 \mathrm{~V}$ analog - Resolution: 8 Bit

Profibus ratings (120)

DP Versions	\bullet DPV0/DPV1
Communication Speed	\bullet up to 12 MHz
Profibus ID	\bullet C320
Device master file	\bullet PAR_C320.GSD
	(can be found on the Compax3 - DVD)

Pofinet - Characteristics (132)

Profinet Version	\bullet Profinet IO (RT)
Transmission mode	\bullet 100BASE-TX (Full Duplex)
Profinet ID	\bullet C332
Device master file	\bullet GSDML-V2.1-Parker-Compax3-yyyymmd
	d.xml (can be found on the Compax3 DVD)

11. Index

$+$

+/-10V analog speed setpoint value as signal source•154

A

Absolute encoder • 110
Absolutposition im Geber speichern • 111
Acceleration / deceleration for positioning • 130
Acceleration for positioning and velocity control

- 130

Access to the hazardous area $\cdot 87,90$
Activation • 238
Adapterkabel SSK32/20•380
Additional conditions of utilization • 20
Adjusting the basic address • 61
Adjusting the bus address (Profibus I20) • 62
Adjusting the bus address (Profinet I32) • 63
Adjusting the machine zero proximity switch •
124
Advanced • 204
Advantages of using the • 79
Alignment of the analog inputs - 234
Allgemeine Gefahren • 15
Analog Inputs/Outputs • 334
Analoge Strom- und Spannungseingänge
(Option M21) • 384
Analogue / encoder (plug X11) • 66
Analyses in the time range $\cdot 239$
Application parameters • 169
Applikationsbeispiel STO (= Sicher
abgeschaltetes Moment) • 84
Approximation of a well-attenuated control loop - 188

ASCII - record • 281
Assignment of the different motion functions • 311
Assignment of the X22 connector • 381
Asynchronmotoren • 182
Asynchronous motors
Extension of the controller structure • 185
Attenuation of the excitation amplitude • 249
Aufbau der Satztabelle - 310
Automated controller design • 195
Automatic controller design • 186
Azyklischer Parameterkanal • 312

B

Ballast resistor • 36, 105, 395
Ballast resistor BRM13/01 \& BRM14/01•371
Ballastwiderstand / Leistungsspannung
Stecker X2 bei 1AC
230VAC/240VAC-Geräten • 36
Basic functions: • 89
Basic structure of the control with Compax3 168

Basics of frequency response measurement 264
Bedeutung der Status-LEDs - PSUP (Netzmodul) • 29
Begrenzung der Sollgeschwindigkeit • 201
Begrenzung des Sollstroms • 201
Beispiel
Elektronisches Getriebe mit Lageerfassung über Encoder • 153
Beschaltung der analogen
Spannungseingänge • 385
Beschaltung der analogen Stromeingänge • 384
Bestellhinweis Kabel • 342
Bestellschlüssel Ein-/Ausgangsklemmen (PIO) - 341

Bestellschlüssel Feedbackkabel • 339
Bestellschlüssel Kondensatormodul • 340
Bestellschlüssel Netzfilter (C3S) • 340
Bestellschlüssel Zubehör • 338
Betriebsart
Direktes Positionieren • 293
Positionieren duch Satzanwahl • 295
Betriebsarten - 289
Bewegungsobjekte in Compax3 - 231
Bewegungszyklus ohne Vorsteuerung • 203
Binary record • 282
Bit sequence V2 • 333
Boundary conditions • 232
Brake delay times • 271
Braking resistor / high voltage DC C3S connector X2 • 36
Braking resistor / high voltage supply connector X2 for 3AC 400VAC/480VAC_C3S devices•38
Braking resistor / high voltage supply plug X2 for 3AC 230VAC/240VAC devices - 36
Braking resistor / supply voltage $\mathrm{C} 3 \mathrm{H} \cdot 58$
Braking resistor / temperature switch PSUP (mains module) • 47
Braking resistor BRM11/01 \& BRM12/01 • 371
Braking resistor BRM4/0x and BRM10/02•370
Braking resistor BRM5/02, BRM9/01 \& BRM10/01 • 370
BRM10/02 • 359, 363, 370
BRM5/01 braking resistor $\cdot 369$
BRM8/01braking resistors • 369
Busformat Y2 und Y4 • 332
Byte string OS • 333

C

C3 ServoSignalAnalyzer • 236
C3 settings for RS485 four wire operation 280
C3 settings for RS485 two wire operation • 279
Calculation of the BRM cooling time • 360

Calculation of the reference current from the characteristic line. • 172
Calling up the input simulation - 229
Capacitors • 14
Cascade control • 192
Cascade structure of Compax3 - 193
Change assignment direction reversal / limit switches • 129
Change initiator logic • 129
Changing the switching frequency and the reference point • 181
Characteristics of a control loop setpoint response • 191
Circuit layout overview - 84
Circuit: • 85, 88
COM port protocol • 281
Communication • 272
Communication Compax3M • 60
Communication interfaces - 59
Commutation settings of the automatic commutation • 211
Compax3 - Objekte • 318
Compax3 communication variants • 272
Compax3 device description - 28
Compax3 T11
Positioning via Profibus (I20) or Profinet (I32) • 26
Compax3H connections front plate • 53
Compax3H plugs/connections • 51
Compax3M STO application description • 94
Compax3S connectors • 30
Compax3Sxxx V2• 35
Compax3Sxxx V4•37
Conditions of utilization - 18
Conditions of utilization for cables / motor filter - 19

Conditions of utilization for CE-conform operation • 18
Conditions of utilization for the STO function with Compax3M•92
Conditions of utilization for UL approval Compax3M • 22
Conditions of utilization mains filter • 18
Conditions of utilization STO (=safe torque off) Safety function - 83
Configuration name / comments • 149
Configuration of load control • 157
Configuration of local modem 1-287
Configuration of remote modem $2 \cdot 288$
Configuration of the process-data channel • 290
Configuring the signal Source $\cdot 151$
Connect braking resistor C3H • 58
Connection of a braking resistor $\cdot 36,38$
Connection of terminal box MH145 \& MH205 • 357
Connection of the digital Outputs/Inputs • 68
Connection of the power voltage - 52
Connection of the power voltage of 2 C 3 H 3 AC devices • 58
Connection of the power voltage of 2 C3S 3AC devices • 38

Connections of Compax3H • 51
Connections of Compax3S • 30
Connections of digital inputs and outputs M10 \& M12•381
Connections of the axis combination • 43
Connections of the encoder interface - 66
Connections on the device bottom • 42
Connections to the motor • 354
Connector assignment Option M21 X20•384
Connector assignment Option M21 X21•385
Control path • 170
Control sctructures • 199, 204, 206
Control signal filter / filter of actual acceleration value • 204
Control signal limitations • 200
Control voltage 24 VDC • 33
Control voltage 24 VDC C3H • 57
Control voltage 24VDC / enable connector X4 C3S • 33
Control voltage 24VDC PSUP (mains module) - 44

Control word 1 overview • 300
Controller coefficients • 196
Controller optimization • 167
Controller optimization Advanced • 225
Controller optimization disturbance and setpoint behavior (advanced) • 225
Controller optimization disturbance and setpoint behavior (standard) • 223
Controller optimization guiding transmission behavior - 227
Controller optimization of toothed belt drive • 224
Controller optimization standard • 223
Correlation between the terms introduced 195
Course of the automatic commutation function - 212

Current (Torque) Limit • 132
Current control • 251
Current jerk response • 217
Current jerk response with the activated saturation characteristic line • 217
Cut-off frequency for the field weakening range - 184

Cyclic process data channel • 299

D

D/A-Monitor • 334
Data formats of the bus objects • 331
Deadband following error • 218
Debouncing Limit switch, machine zero and input 0-129
Defining jerk / ramps • 130
Defining the reference system • 106
Definition of the states of the programmable status bits (PSBs): • 311
Demand behavior • 190
Description of jerk - 130
Determination of the commutation settings • 184

Devices with the STO (=safe torque off) safety function • 80
Digital inputs/outputs • 68
Digitale Ein-/Ausgänge (Stecker X12) • 67
Digitale Ein-/Ausgangsoption M12 (I12) • 381
Dimensions of the braking resistors $\cdot 369$
Direktantriebe • 343
Display of the commutation error in incremental feedback systems • 211
Display of the measurement point at the cursor position•263
Display of the measurement result • 262
Distinction between signals and systems • 264
Disturbance behavior • 190
Disturbance jerk response • 194
D-term of the KD velocity controller • 197
Dynamic positioning • 150
Dynamic stiffness • 193
Dynamics of a control • 186

E

E/A - Belegung • 136
E/A-Schnittstelle X12 / X22 / SSK22•378
EAM06
Klemmenblock für Ein- und Ausgänge • 373
Effect of the notch filter • 215
Eingangssimulation • 229
Einleitung •10, 168
Einsatzbedingungen für die UL-Zulassung Compax3H•24
Einsatzbedingungen für die UL-Zulassung Compax3S • 21
Einsatzbedingungen für die UL-Zulassung PSUP • 23
Electronic gearbox (Gearing) • 147
Electronic simulation of a disturbance torque jerk with the disturbance current jerk • 194
EMC feedforward • 208
EMC measures • 346
Emergency stop and protective door monitoring without external safety switching device. 96
Encoder A/B 5V, step/direction or SSI feedback as signal source • 153
Encoder bypass with Feedback module F12 (for direct drives) • 135
Encoder cable • 358
Encoderkopplung von 2 Compax3 - Achsen / SSK29 • 379
Encodernachbildung•135
EnDat - Kabel • 356
Error
Position difference between load mounted and motor feedback too high • 158
Error response • 149
Ersatzschaltbild - Daten für eine Phase • 182
ETHERNET-RS485 NetCOM 113 adapter • 277
Example
Changing the stiffness • 314 Setting the Oscilloscope $\cdot 165$
Example 1

Reg comes after the reg restriction window • 144
Example 2
Reg within the reg restriction window • 144
Example 3
Reg is missing or comes after termination of the RegSearch motion set • 145

Example 4

Reg comes before the reg restriction window • 146
Example 5
The registration mark comes after the reg restriction window, registration mark can, however, not be reached without direction reversal•146
Excitation Signal • 248
Extended cascade (structure variant 1) • 204
Extended cascade structure (structure variant
2 with disturbance variable observer) • 206
External braking resistors • 359
External Moment of Inertia • 181
external position correction - 156
External setpoint generation - 221

F

Feedback error compensation • 175
Feedforward channels • 202
Fehler - 335
Fehlerreaktion bei Busausfall • 296
Ferrite - 34
Filter • 208
Fixed point format C4 3-332
Fixed point format E2_6•331
Flow chart controller optimization of a direct drive • 226
Following Error (Position Error) • 179
Following error limit • 134
Fremdmotor • 180
Frequency response of the notch filter. • 216
Frequency settings • 255
Frequenzgang des P-TE Gliedes (Betrag und Phase) - 189
Front connector • 41
Function description
Direct positioning • 305
Positioning with set selection • 309
Function of the Bus LEDs (Profibus I20) • 62
Function of the Bus LEDs (Profinet I32) • 63
Function principle of the automatic
commutation with movement • 213
Functionality of the measurement • 242 , 245

G

Gain alignment • 235
Gebersysteme für Direktantriebe • 344
General Description • 78
General drive - 105
General layout of the table • 311
Gerätezuordnung•10
GSD - File • 27
H

Hardware-Endgrenzen • 128
HEDA (motion bus) - Option M11 • 382
Homing modes with home switch (on X12/14) • 114

I

$I^{2} \mathrm{t}$ - monitoring of the motor $\cdot 176$
Ignore zone (example) • 139
Important terms and explanations • 78
Inbetriebnahme Compax3 • 100
Inbetriebnahmefenster • 219
Increased following error • 174
Influence of the feedforward measures • 202
Inputs / Outputs CW, SW•137
Instable behavior • 175
Installation instructions Compax3M•39
Installation und Freischaltung des
ServoSignalAnalyzers • 238
Integer formats • 331
Intended use • 79
Interface - 173
Interface cable • 376
Interface cable order code • 341
Internal setpoint generation •219
Introduction observer • 208

J

Jerk for STOP, MANUAL and error • 132
Jerk limit for positioning • 130
Jerk value • 130

K

Kommunikation im Achsverbund (Stecker X30, X31) • 60
Kommutierungseinstellungen • 176
Kondensatormodul ModulC4•372
Konfiguration •100, 170

L

Lastidentifikation • 219, 232
Lastregelung •156, 208
Leak effect and windowing $\cdot 243$
LEDs•28, 29
Level • 68
Limit and monitoring settings • 132, 182
Limitation behavior • 192
Limitation of the control voltage - 202
Linear motors - 345
Linear Systems (LTI System) • 265
Linear two mass system • 268
Linearized motor characteristic lien for different operating points • 177
Load control signal image - 158
Logic proximity switch types • 68
Luenberg observer • 208

M

Machine Zero • 109
Machine zero modes overview • 112
Machine zero modes without home switch • 120

Machine zero only from motor reference • 122
Machine zero speed and acceleration • 125
Main flow chart of the controller optimization 222
Main voltage supply C3S connector X1•35
Mains connection Compax3H • 57
Mains filter • 346
Mains filter for NFI01/03 • 348
Mains filter for PSUP30 • 353
Mains filter NFI01/01•347
Mains filter NFI01/02 • 347
Mains filter NFI02/0x • 348
Mains filter NFI03/01\& NFI03/03 • 349
Mains filter NFI03/02 • 350
Mains supply PSUP (mains module) X41•45
Mass inertia • 171
Maximum operating speed $\cdot 134$
Meaning of the status LEDs - Compax3 axis controller - 28
Measure reference - 106
Measurement of frequency responses • 245
Measurement of frequency spectra $\cdot 242$
Measurement of the motor temperature of Compax3M (axis controller) • 50
Mechanical system • 252, 266
MN-M 1,2
Limit switch as machine zero • 123
MN-M 11... 14
With direction reversal switches on the negative side • 119
MN-M 128/129 Stromschwelle while moving to block • 120
MN-M 130, 131
Acquire absolute position via distance coding • 122
MN-M 132, 133
Determine absolute position via distance coding with direction reversal switches 124
MN-M 17,18 Limit switch as machine zero • 121
MN-M 19,20
MN-Initiator $=1$ on the positive side $\cdot 114$
MN-M 21,22 MN Initiator = 1 on the negative side $\cdot 115$
MN-M 23... 26
Direction reversal switches on the positive side - 116

MN-M 27... 30
Direction reversal switches on the negative side • 116
MN-M 3,4 MN-Initiator = 1 on the positive side $\cdot 117$
MN-M 33,34 MN at motor zero point • 122
MN-M 35 MN (machine zero) at the current position • 120
MN-M 5,6 MN-Initiator = 1 auf der negativen Seite $\cdot 118$
MN-M 7... 10

Direction reversal switches on the positive side - 119

Mode 1
Time and maximum values are deduced from Compax3 input values • 269
Mode 2
Compax3 input values are deduced from times and maximum values • 270
Modem cable SSK31•380
Modem MB-Connectline MDH 500 / MDH 504 - 278

Monitor information • 160
Motion cycle with feedforward measures • 203
Motion functions - 142
Motion profile at jerk-controlled setpoint generation • 220
Motion set • 231
Motor - Dauerauslastung: • 176
Motor / Motor brake C3S connector X3 • 34
Motor / motor brake Compax3M (axis controller) • 49
Motor / Motorbremse C3H • 56
Motor cable • 357
Motor characteristic line of a synchronous servo motor (torque via velocity) • 172
Motor Connection • 34
Motor holding brake $\cdot 34$
Motor output filter • 351
Motor output filter MDR01/01•351
Motor output filter MDR01/02 • 352
Motor output filter MDR01/04 • 351
Motor parameters • 180, 208
Motor parameters relevant for the control • 171
Motor pulse usage • 178
Motor reference point • 181
Motor selection • 102
Motor types supported • 181
Mounting and dimensions • 69
Mounting and dimensions $\mathrm{C} 3 \mathrm{H} \cdot 75$
Mounting and dimensions Compax3S • 69
Mounting and dimensions Compax3S0xxV2 • 69
Mounting and dimensions Compax3S100V2 and S0xxV4•70
Mounting and dimensions Compax3S150V2 and S150V4•71
Mounting and dimensions Compax3S300V4• 72
Mounting and dimensions PSUP/C3M•73
Mounting and dimensions PSUP10/C3M050D6, C3M100D6, C3M150D6•73
Mounting and dimensions PSUP20/PSUP30/C3M300D6 • 74
Mounting distances, air currents Compax3H050V4•76
Mounting distances, air currents Compax3H090V4•76
Mounting distances, air currents Compax3H1xxV4•77
MoveAbs und MoveRel • 142

Netzdrosseln • 353
Noise • 174
Nominal point • 177
Nominal point data • 171
Non-linearities and their effects • 248
Notch filter • 215
Note on error switch-off • 84
Notes on the STO function • 83
0
Object overview sorted by object name (I20132T11) • 325
Object overview sorted by PNU (I20I32T11) • 319
Object Upload/download via Profibus/Profinet • 315
Offset alignment - 234
Open/Closed Loop frequency response measurement • 247
Operating and status field $\cdot 260$
Operating mode Speed control • 291
Operating mode direct positioning • 303
Operating mode positioning with set selection • 307
Operating Principle • 229
Operation with MultiTurn emulation • 111
Operator control module BDM • 373
Optimierung • 159
Optimization parameter Advanced • 207
Optimization window • 159
Optimize motor reference point and switching frequency of the motor current - 102
Option M10 = HEDA (M11) \& I/Os (M12) • 383
Options M1x • 381
Order and response processing • 313
Order code • 336
Order Code braking resistors • 339
Order code device Compax3 - 337
Order code for mains module PSUP • 338
Oscillating plant • 186
Oscilloscope operating mode switch: • 162
Other • 215
Other settings • 257
Overview of the user interface - 251

P

Parameter access with DPV0 Required data channel $\cdot 312$
Parameterization by 3 objects. • 216
Parker Motor • 180
Parker Servomotoren • 343
Path optimized positioning • 137
PC - PSUP (Mains module) • 60
PC <-> C3M device combination (USB) • 275
PC <-> Compax3 (RS232) • 273
PC <-> Compax3 (RS485) • 274
Permissible braking pulse power BRM04/01 with C3S150V2•365

BRM04/01 with C3S300V4•366
BRM04/02 with C3S150V2•366
BRM04/02 with C3S300V4•367
BRM04/03 with C3S300V4 • 367
BRM05/01 with C3S063V2•364
BRM05/01 with C3S075V4 • 364
BRM05/02 with C3S075V4•365
BRM08/01 with C3S015V4 / C3S038V4•361
BRM08/01 with C3S025V2•362
BRM09/01 with C3S100V2•362
BRM10/01 with C3S150V4•363
BRM10/02 with C3S150V4 • 363
BRM11/01 with C3H0xxV4•368
BRM12/01 with $\mathrm{C} 3 \mathrm{H} 1 \mathrm{xxV4} \cdot 368$
BRM13/01 with PSUP10D6 • 369
BRM14/01 with PSUP10D6 • 369
Permissible braking pulse powers of the
braking resistors • 360
PKW parameter channel • 296
Plug assignment Compax3S0xx V2•33, 34, 35, 36, 59, 64
Position control - 253
Position correction • 156
Position measurement external - 156
Position mode in reset operation - 137
Positioning after homing run - 109
Positioning window - Position reached • 133
Power supply • 35
Power supply connector X1 for 3AC 400VAC/480VAC-C3S devices • 37
Power supply plug X1 for 1 AC 230VAC/240VAC devices • 35
Power supply plug X1 for 3AC 230VAC/240VAC devices • 35
Power supply voltage DC C3H • 58
PPO type • 290
Prerequisites for the automatic commutation 212
Principle - 232
Proceeding during controller optimization • 221
Process of the automatic determination of the load characteristic value (load identification) - 233

Profibus \& Profinet • 289
Profibus / Profinet configuration • 289
Profibus connector X23 on Interface I20 • 62
Profibus plug BUS08/01•386
Profibus-Master configuration • 289
ProfileViewer for the optimization of the motion profile - 269
Profinet connector X23, X24 on Interface I32• 62
Profinet Zertifikat • 11
Programmable status bits (PSBs) • 140
PSUP/Compax3M Connections • 41
P-TE - Symbol • 188
P-term KV position loop • 197

Q

Quality of different feedback systems •173
R

Ramp upon error and de-energize • 131
Recommendations for preparing the modem operation - 288
Reduction of the current ripple - 180
Ref X11 / SSK21•378
Reference point 1 higher velocity at reduced torque • 177
Reference point 2 Increased torque thanks to additional cooling • 178
Regelungsmaßnahmen für reibungsbehaftete Antriebe • 218
Reg-related positioning (RegSearch, RegMove) • 143
Reg-related positioning / defining ignore zone • 139
Reibungskompensation • 219
Relevant application parameters • 179
Remote diagnosis via Modem • 286
Resolution • 173
Resolver • 64
Resolver / Feedback (connector X13) • 64
Resolver cable • 355
Resonance points and their causes • 267
Response • 192
Rigidity • 193
Rotary servo motors • 345
Rotary two mass system • 267
Rotor time constant • 184
RS232 - Kabel / SSK1 • 376
RS232 / RS485 interface (plug X10) • 59
RS232 plug assignment • 59
RS485-Kabel zu Pop / SSK27•377
RS485 plug assignment • 59
RS485 settings values $\cdot 281$

S

Safe torque off • 78
Safe torque off basic function • 86
Safe torque off description • 86, 89
Safe torque off layout with bus - 87
Safety function - STO (=safe torque off) • 78
Safety instructions • 15
Safety instructions concerning the frequency response measurement • 245
Safety notes for the STO function in the Compax3M• 92
Safety switching circuits • 91
Safety technology option S3 for Compax3M (axis controller) • 50
Safety-conscious working• 15
Sättigungsverhalten • 183, 217
Saturation values • 173
Satztabelle beschreiben • 140
Scope • 160
Scope of delivery • 12
Selection of the signal or system to be measured. • 251
Selection of the supply voltage used • 101
ServoSignalAnalyzer - function range • 236
Setpoint and disturbance behavior of a control loop •190

Setpoint generation • 219
Setting the axis function • 61
Setting the time basis XDIV • 162
Settings for channels $1 . .4$ • 163
Setup and optimization of the control • 198
Setup mode • 230
Shifting the working point into a linear range • 249
Signal analysis overview • 237
Signal processing of the analog input 0•154
Signal processing of the analog inputs $\cdot 235$
Signal source of the load feedback system • 151
Signalfilterung bei externer Sollwertvorgabe • 227
Signalfilterung bei externer Sollwertvorgabe und elektronischem Getriebe • 228
Signalflussplan Luenberger-Beobachter • 209
Signalquelle für Gearing wählen • 151
Signalquelle HEDA•152
Signalschnittstellen • 64
SinCos© cable • 356
Slip • 156
Slip Frequency • 183
Software end limits • 126
Software zur Unterstützung der Konfiguration, Inbetriebnahme und Optimierung • 169
Special functions - 164
Special safety instructions • 16
Speed control • 256
Speed control operating mode • 301
Speed for positioning and velocity control •130
Speed specification (Velocity) • 149
Stability problem in the high-frequency range: • 187
Stability problem in the low-frequency range: • 187
Stability, attenuation - 186
Standard • 198
Standard cascade structure • 199
Standard optimization parameters • 200
Static stiffness - 193
Status LEDs • 28, 29
Status machine • 296
Status machine Position PROFIDrive • 299
Status machine PROFIDrive • 297
Status machine PROFIDrive speed control • 298
Status values • 334
Status word 1 in the rotation speed control operating mode $\cdot 302$
Status word 1 operating mode direct positioning • 304
Status word 1 operating mode Positioning with set selection - 308
Status word 1 overview • 300
Status word 2 • 309
Statuswort 2 (Satzanwahl) • 308
Stecker- und Pinbelegung C3H • 54
Stecker- und Pinbelegung C3S • 31
Step response of a delay component • 188

Step response of the velocity loop depending
on the optimization parameter • 196
STO (= safe torque off) with Compax3m
(Option S1) • 91
STO (= safe torque off) with Compax3S • 81
STO delay times • 82, 93
STO function description • 95
STO function test • 97
STO function with safety switching device via Compax3M inputs • 94
STO Principle (= Safe Torque Off) with Compax3S • 81
STO Test-Protokoll-Vorschlag
(Sicherheitsoption S1) • 98
Stop command (Stop) • 149
Storage - 14
Strom auf dem Netz-PE (Ableitstrom) • 25
Structure - 286
Structure of a cascade control - 192
Structure of a control • 186
Supply networks • 25
Switching frequency of the motor current / motor reference point • 179

T

TCP/IP communication with Profinet • 317
Teach machine zero • 120
Technical Characteristics STO Compax3S • 90
Technische Daten • 387
Technische Daten der Compax3M S1-Option • 99
Temperature switch PSUP (mains module) • 48
Test functions • 191
The calculation of the physically possible acceleration•220
Time frame signal source master • 155
Time function and power density spectrum of Compax3 setpoint generator with different jerk settings • 221
Tips • 234
Too high overshoot on velocity • 174
Toothed belt drive as two mass system • 268
Toroidal core ferrite - 34
Torque motors • 345
Tracking filter • 227
Traditional generation of a disturbance torque/force jerk • 194
Travel Limit Settings • 126
Trigger settings • 164
Turning the motor holding brake on and off • 271
Type specification plate $\cdot 13$
Type specification plate data • 182
Typical problems of a non optimized control • 174

U

Unsigned - Formats • 331
Usage in accordance with intended purpose • 15
USB - RS232 converter - 59

USB-RS485 Adapter Moxa Uport 1130•276
User interface • 161
V
Velocity Loop P Term•196
Velocity, bandwidth • 187
Verpackung, Transport, Lagerung • 14
Voltage decoupling • 208
Vorgehen bei der Konfiguration, Inbetriebnahme und Optimierung • 168

W

Warranty conditions • 17
Wiring of analog interfaces • 66
Wiring of the motor output filter • 352
With direction reversal switches • 115, 118, 123
With motor reference point • 117, 122
With upper mounting, the housing design may be different • 74
Without direction reversal switches • 114, 117
Without motor reference point •114, 120
Wrongly set notch filter • 215
X
X1•35
X10•59
X11•66
X12•67
X13•64
X14 Safety technology option S1 for
Compax3M (axis controller) • 50
X2•36
X3•34
X4•33
Z
Zubehör Compax3•343

[^0]: * for UL conform operation (see on page 21), a miniature circuit breaker, K characteristic, Type S203 is to be used.

[^1]: ${ }^{11}$ When the connection between transistor emitter of the initiator and X12/15 (GND24V of the Compax3)is lost, it can not be guaranteed, that the Compax3 detects a logical „0".
 ${ }^{2)}$ The INSOR NPN types INHE5212 and INHE5213 manufactured by Schönbuch Electronic do correspond to this specification.

[^2]: * Potential separation with optocoupler.

[^3]: Mechanical limit values!
 Observe the limit values of the mechanical components! Ignoring the limit values can lead to destruction of the mechanical components.

[^4]: Stability problem in the high-frequency range:

 In general, two stability problems may occur in a servo drive control:

[^5]: Stated in mm

[^6]: ${ }^{(x}$ Note on cable (see on page 342)
 In this chapter you can read about:
 Resolver cable.. 355
 SinCos® cable... 356
 EnDat cable... 356
 Motor cable... 357
 Encoder cable ... 358

[^7]: The values marked with grey are the pre-set values (standard values)!
 *corresponds to the frequency of the motor current

[^8]: * higher values on request

